Syndromic Surveillance – Reports of Successes from the Field

Syndromic surveillance uses near-real-time emergency department and other health care data for enhancing public health situational awareness and informing public health activities. In recent years, continued progress has been made in developing and strengthening syndromic surveillance activities.

January 21, 2018

Tracking suspected heroin overdoses in CDC's National Syndromic Surveillance Program

Overdose deaths involving opioids (i.e., opioid pain relievers and illicit opioids such as heroin) accounted for at least 63% (N = 33,091) of overdose deaths in 2015. Overdose deaths related to illicit opioids, heroin and illicitly-manufactured fentanyl, have rapidly increased since 2010. For instance, heroin overdose deaths quadrupled from 3,036 in 2010 to 12,989 in 2015. Unfortunately, timely response to emerging trends is inhibited by time lags for national data on both overdose mortality via vital statistics (8-12 months) and morbidity via hospital discharge data (over 2 years).

January 21, 2018

Tracking drug-related overdoses at the local level: Using Syndromic Surveillance in the CO-NCR

The United States is in the midst of a drug crisis; drug-related overdoses are the leading cause of unintentional death in the country. In Colorado the rate of fatal drug overdose increased 68% from 2002-2014 (9.7 deaths per 100,000 to 16.3 per 100,000, respectively), and non-fatal overdose also increased during this time period (23% increase in emergency department visits since 2011).

January 25, 2018

Assessment of the use of ED Chief Complaint Data for monitoring Chronic Diseases

Syndromic Surveillance (SS), traditionally applied to infectious diseases, is more recently being adapted to chronic disease prevention. Its usefulness rests on the large number of diverse individuals visiting emergency rooms with the possibility of real-time monitoring of acute health effects, including effects from environmental events and its potential ability to examine more long-term health effects and trends of chronic diseases on a local level.

Objective:

January 21, 2018

Comparison of statistical algorithms for syndromic surveillance aberration detection

Syndromic surveillance involves monitoring big health datasets to provide early warning of threats to public health. Public health authorities use statistical detection algorithms to interrogate these datasets for aberrations that are indicative of emerging threats. The algorithm currently in use at Public Health England (PHE) for syndromic surveillance is the ‘rising activity, multi-level mixed effects, indicator emphasis’ (RAMMIE) method (Morbey et al, 2015), which fits a mixed model to counts of syndromes on a daily basis.

January 21, 2018

Implementation of a Facility Based County Surveillance System Using Epi Info

Surveillance in nursing homes (Enserink et al., 2011) and day care facilities (Enserink et al., 2012) has been conducted in the Netherlands, but is not commonly practiced in the United States (Buehler et al., 2008). Outbreaks of illnesses within these facilities are required to be reported to the Epidemiology Program, however a small fraction of outbreaks reported come from LTCFs. Without regular communication between LTCFs and the Epidemiology Program, it is likely that many outbreaks are going unreported due to lack of awareness of the reporting requirements by facility staff.

January 25, 2018

Outbreak of ED visits related to the use of synthetic cannabinoids, Mayotte Island

On October 2016, the Indian Ocean Regional Health Agency was alerted about an increase in ED visits related to adverse reactions associated with use of SC on Mayotte Island. In this context, an investigation based on a syndromic surveillance system was implemented by the regional unit of the French national public health agency.

Objective:

To confirm and to characterize the increase in emergency department (ED) visits related to the use of synthetic cannabinoids (SC).

January 21, 2018

Updating syndromic surveillance baselines following public health interventions

Public Health England's syndromic surveillance service monitor presentations for gastrointestinal illness to detect increases in health care seeking behaviour driven by infectious gastrointestinal disease. We use regression models to create baselines for expected activity and then identify any periods of signficant increases. The introduction of a rotavirus vaccine in England during July 2013 (Bawa, Z. et al. 2015) led to a reduction in incidence of the disease, requiring a readjustment of baselines.

Objective:

January 21, 2018

Evaluation of Syndrome Algorithms for Detecting Pneumonia Emergency Department Visits

The NYC Department of Health and Mental Hygiene (DOHMH) uses ED syndromic surveillance to monitor near real-time trends in pneumonia visits. The original pneumonia algorithm was developed based on ED chief complaints, and more recently was modified following a legionella outbreak in NYC. In 2016, syndromic data was matched to New York State all payer database (SPARCS) for 2010 through 2015. We leveraged this matched dataset to validate ED visits identified by our pneumonia algorithm and suggest improvements.

January 25, 2018

Free-Text Mining to Improve Syndrome Definition Matching Across Emergency Departments

Standard syndrome definitions for ED visits in ESSENCE rely on chief complaints. Visits with more words in the chief complaint field are more likely to match syndrome definitions. While using ESSENCE, we observed geographic differences in chief complaint length, apparently related to differences in electronic health record (EHR) systems, which resulted in disparate syndrome matching across Idaho regions.

January 21, 2018

Pages

Contact Us

NSSP Community of Practice

Email: syndromic@cste.org

 

This website is supported by Cooperative Agreement # 6NU38OT000297-02-01 Strengthening Public Health Systems and Services through National Partnerships to Improve and Protect the Nation's Health between the Centers for Disease Control and Prevention (CDC) and the Council of State and Territorial Epidemiologists. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC. CDC is not responsible for Section 508 compliance (accessibility) on private websites.

Site created by Fusani Applications