A Bayesian Hierarchical Model for Estimating Influenza Epidemic Severity

Timely monitoring and prediction of the trajectory of seasonal influenza epidemics allows hospitals and medical centers to prepare for, and provide better service to, patients with influenza. The CDC’s ILINet system collects data on influenza-like illnesses from over 3,300 health care providers, and uses this data to produce accurate indicators of current influenza epidemic severity. However, ILINet indicators are typically reported at a lag of 1-2 weeks. Another source of severity data, Google Flu Trends, is calculated by aggregating Google searches for certain influenza related terms.

August 07, 2017

A Method for Detecting and Characterizing Multiple Outbreaks of Infectious Diseases

We describe an automated system that can detect multiple outbreaks of infectious diseases from emergency department reports. A case detection system obtains data from electronic medical records, extracts features using natural language processing, then infers a probability distribution over the diseases each patient may have. Then, a multiple outbreak detection system (MODS) searches for models of multiple outbreaks to explain the data. MODS detects outbreaks of influenza and non-influenza influenza-like illnesses (NI-ILI).

August 07, 2017

A Bayesian Approach to Characterize Hong Kong Influenza Surveillance Systems

Syndromic surveillance has been widely used in influenza surveillance worldwide. However, despite the potential benefits created by the large volume of data, biases due to the changes in healthcare seeking behavior and physicians’ reporting behavior, as well as the background noise caused by seasonal flu epidemics, contribute to the complexity of the surveillance system and may limit its utility as a tool for early detection.

January 19, 2018

Bayesian Contact Tracing for Communicable Respiratory Disease

The evolution of novel influenza viruses in humans is a bio- logical phenomenon that can not be stopped. All existing data suggest that vaccination against the morbidity and mortality of the novel influenza viruses is our best line of defence. Unfortunately, vaccination requires that the infectious agent to be quickly identified and a safe vaccine in large quantities is produced and administered. As was witnessed with the 2009 H1N1 influenza pandemic, these steps took a frustratingly long period during which the novel influenza virus continued its unstoppable and rapid global spreading.

January 24, 2018

Determinants of Outbreak Detection Performance

The choice of outbreak detection algorithm and its configuration can result in important variations in the performance of public health surveillance systems. Our work aims to characterize the performance of detectors based on outbreak types. We are using Bayesian networks (BN) to model the relationships between determinants of outbreak detection and the detection performance based on a significant study on simulated data.


March 02, 2018

Sequential Bayesian Inference for Detection and Response to Seasonal Epidemics

Detection and response to seasonal outbreaks of endemic diseases provides an excellent testbed for quantitative bio-surveillance. As a case study we focus on annual influenza outbreaks. To incorporate observed year-over-year variation in flu incidence cases and timing of outbreaks, we analyze a stochastic compartmental SIS model that includes seasonal forcing by a latent Markovian factor. Epidemic detection then consists in identifying the presence of the environmental factor (“high” flu season), as well as estimation of the epidemic parameters, such as contact and recovery rates.

May 25, 2018

Modeling Baseline Shifts in Multivariate Disease Outbreak Detection

Population surges or large events may cause shift of data collected by biosurveillance systems [1]. For example, the Cherry Blossom Festival brings hundreds of thousands of people to DC every year, which results in simultaneous elevations in multiple data streams (Fig. 1). In this paper, we propose an MGD model to accommodate the needs of dealing with baseline shifts.


June 25, 2018

Refinement of a Population-Based Bayesian Network for Fusion of Health Surveillance Data

The ESSENCE demonstration module was built to help DoD health monitors make routine decisions based on disparate evidence sources such as daily counts of ILI-related chief complaints, ratios of positive lab tests for influenza, patient age distribution, and counts of antiviral prescriptions [1]. The module was a population-based (rather than individual-based) Bayesian network (PBN) in that inputs were algorithmic results from these multiple aggregate data streams, and output was the degree of belief that the combined evidence required investigation.

July 05, 2018

Tau-leaped Particle Learning

Development of effective policy interventions to stem disease outbreaks requires knowledge of the current state of affairs, e.g. how many individuals are currently infected, a strain’s virulence, etc, as well as our uncertainty of these values. A Bayesian inferential approach provides this information, but at a computational expense. We develop a sequential Bayesian approach based on an epidemiological compartment model and noisy count observations of the transitions between compartments.


July 10, 2018

A spatial accuracy assessment of a Bayesian Bernoulli Spatial Scan Statistic

With the increase in GPS enabled devices, pin-point spatial data is an obvious future growth area for cluster detection research. The FBSSS handles binary labelled point data, but requires Monte Carlo testing to obtain inference [1]. In the Bayesian Poisson SSS [2], Monte Carlo is replaced by use of historic data, manifoldly speeding up processing. Following [2], [3] derived the BBSSS, replacing historic data with expert knowledge on cluster relative risk.

May 02, 2019


Contact Us

NSSP Community of Practice

Email: syndromic@cste.org


This website is supported by Cooperative Agreement # 6NU38OT000297-02-01 Strengthening Public Health Systems and Services through National Partnerships to Improve and Protect the Nation's Health between the Centers for Disease Control and Prevention (CDC) and the Council of State and Territorial Epidemiologists. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC. CDC is not responsible for Section 508 compliance (accessibility) on private websites.

Site created by Fusani Applications