Skip to main content

Visualization

Description

Given the periodic nature of influenza activity, it is important to develop visualization tools that enable enhanced decision-making. User-Centered Design is a set of software development methodologies that primarily employ user needs to develop applications. Similarly, Usability Heuristics provide a set of rules that increase the performance of user interfaces, and ease of use. We combined some of these techniques to develop FluView Interactive, a prototype that will enable users to better understand influenza information.

 

Objective

The objective of this study is to report on the use of User-Centered Design and Usability Heuristics to improve visualization of influenza-related information at the national level. The intention of the prototype is to make data more accessible to different stakeholders including the general public, public health officials at the local and state level, and other experts.

Submitted by hparton on
Description

The use of syndromic surveillance systems has evolved over the last decade, and increasingly includes both infectious and non- infectious topic areas. Public health agencies at the national, state, and local levels often need to rapidly develop new syndromic categories, or improve upon existing categories, to enhance their public health surveillance efforts. Documenting this development process can help support increased understanding and user acceptance of syndromic surveillance. This presentation will highlight the visualization process being used by CDC’s National Syndromic Surveillance Program (NSSP) program to develop and refine definitions for syndromes of interest to public health programs.

Objective: To describe the use of uni-grams, bi-grams, and tri-grams relationships in the development of syndromic categories.

Submitted by elamb on
Description

More than a decade ago, in collaboration with the U.S. Department of Defense, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) developed the Electronic Surveillance System for the Early Notification of Community-based Epidemics (Enterprise ESSENCE), which is currently used by federal, state and local health authorities in the US. As emerging infections will most likely originate outside of the US (for example, SARS) the application of electronic biosurveillance is increasingly important in resource limited areas. In addition, such systems help governments respond to the recently modified International Health Regulations. Leveraging the experience gained in the development of Enterprise ESSENCE, JHU/APL has developed two freely available electronic biosurveillance systems suitable for use in resource-limited areas: Open ESSENCE (OE) and ESSENCE Desktop Edition (EDE).

 

Objective

This paper describes the development and early implementation of two freely available electronic biosurveillance software applications: OE, and EDE.

Submitted by hparton on
Description

Funded by the Army’s Telemedicine and Advanced Technology Research Center, we developed the BioSINE toolset to provide visualization and collaboration capabilities to improve the accessibility and utility of health surveillance data. Investigation of public health (PH) practitioners’ needs with cognitive engineering methods revealed two key objectives: 

1. To provide analysts and decision makers with an intuitive, visually driven workspace. 

2. To support a web presence to provide rapid updating and facilitate greater interaction with data analysis in the PH community.

To better serve under-resourced PH organizations, both domestic and abroad, it is necessary to minimize information technology requirements and expertise in complex analytic tools.

BioSINE provides decision makers with the ability to create customized visualizations, focus on specific aspects of the data, or conduct hypothesis testing. Users can also view or hide variables, specify data ranges, and filter data relevant to their interests. Figure 1 shows a display in which a user investigated seasonal effects by narrowing the analysis to the summer months. Intuitive filtering is a key characteristic of the application to quickly produce snapshots of local interests.

 

Objective

BioSINE strives to improve situational awareness by making data visualization and collaboration capabilities intuitive and readily available for a wide range of PH stakeholders.

Submitted by hparton on
Description

The Public Health - Seattle & King County syndromic surveillance system has been collecting emergency department (ED) data since 1999. These data include hospital name, age, sex, zip code, chief complaint, diagnoses (when available), disposition, and a patient and visit key. Data are collected for 19 of 20 King County EDs, for visits that occurred the previous day. Over time, various problems with data quality have been encountered, including data drop-offs, missing data elements, incorrect values of fields, duplication of data, data delays, and unexpected changes in files received from hospitals. In spite of close monitoring of the data as part of our routine syndromic surveillance activities, there have occasionally been delays in identifying these problems. Since the validity of syndromic surveillance is dependent on data quality, we sought to develop a visualization to help monitor data quality over time, in order to improve the timeliness of addressing data quality problems.

 

Objective 

We sought to develop a method for visualizing data quality over time.

Submitted by elamb on
Description

Distribute is a national emergency department syndromic surveillance project developed by the International Society for Disease Surveillance for influenza-like-illness (ILI) that integrates data from existing state and local public health department surveillance systems. The Distribute project provides graphic comparisons of both ILI-related clinical visits across jurisdictions and a national picture of ILI. Unlike other surveillance systems, Distribute is designed to work solely with summarized (aggregated) data which cannot be traced back to the un-aggregated 'raw' data. This and the distributed, voluntary nature of the project creates some unique data quality issues, with considerable site to site variability. Together with the ISDS, the University of Washington has developed processes and tools to address these challenges, mirroring work done by others in the Distribute community.

Objective

To present exploratory tools and methods developed as part of the data quality monitoring of Distribute data, and discuss these tools and their applications with other participants.

Submitted by elamb on
Description

Chronic diseases are the leading causes of mortality and morbidity for Americans but public health surveillance for these conditions is limited. Health departments currently use telephone interviews, medical surveys, and death certificates to gather information on chronic diseases but these sources are limited by cost, timeliness, limited clinical detail, and/or poor population coverage. Continual and automated extraction, analysis, and summarization of EHR data could advance surveillance in each of these domains.

Objective

Develop methods for automated chronic disease surveillance and visualization using electronic health record (EHR) data.

Submitted by elamb on
Description

BioSense data includes Department of Defense and Veterans Affairs ambulatory care diagnoses and procedures, as well as Laboratory Corporation of America lab test orders. Data are mapped to eleven syndrome categories. SaTScan is a spatio-temporal technique that has previously been applied to surveillance at the metropolitan area level. Visualization of national results involves unique issues, including displaying cluster information that crosses jurisdictions, zip codes with highly variant data volume, and evaluating large multiple state clusters. SaTScan was first implemented in June 2005 in the BioSense application for daily monitoring at CDC’s BioIntelligence Center.

 

Objective

The objective is to describe the visualization and monitoring of the national spatio-temporal SaTScan results in the BioSense application. This is the first application of this algorithm to a national early event detection and situational awareness system.

Submitted by elamb on
Description

Syndromic Surveillance has been in use in New York City since 2001, with 2.5 million visits reported from 39 participating emergency departments, covering an estimated 75% of annual visits. As syndromic surveillance becomes increasingly spatial and tied to geography, the resulting spatial analysis is also evolving to provide new methodology and tools. In late 2004, the New York City Department of Health and Mental Hygiene (DOHMH) created the geographic information systems (GIS) Center of Excellence to identify ways in which GIS could enhance programs like syndromic surveillance. The DOHMH uses the SaTScan program for much of its spatial analysis (i.e. cluster analysis).

 

Objective

This paper describes a series of visualization enhancements and automation processes to efficiently depict syndromic surveillance data in GIS. Modelling the portrayal of events when merging existing syndromic surveillance with GIS can standardize and expedite results.

Submitted by elamb on
Description

When the Chicago Bears met the Indianapolis Colts for Super Bowl XLI in Miami in January, 2007, fans from multiple regions visited South Florida for the game. In the past, public health departments have instituted heightened local surveillance during mass gatherings due to concerns about increased risk of disease outbreaks. For the first time, in 2007, health departments in all three Super Bowl-related regions already practiced daily disease surveillance using biosurveillance information systems (separate installations of the ESSENCE system, developed at JHUAPL). The situation provided an opportunity to explore ways in which separate surveillance systems could be coordinated for effective, short-term, multijurisdictional surveillance.

 

Objective

This paper describes an inter-jurisdictional surveillance data sharing effort carried out by public health departments in Miami, Chicago, and Indianapolis in conjunction with Super Bowl XLI.

Submitted by elamb on