Skip to main content

ICD-9

Description

Syndromic surveillance of emergency department (ED) visit data is often based on computer algorithms which assign patient chief complaints (CC) to syndromes. ICD9 code data may also be used to develop visit classifiers for syndromic surveillance but the ICD9 code is generally not available immediately, thus limiting its utility. However, ICD9 has the advantages that ICD9 classifiers may be created rapidly and precisely as a subset of existing ICD9 codes and that the ICD9 codes are independent of the spoken language. If a classifier based on ICD9 codes could be used to automatically create the code for a chief-complaint assignment algorithm then CC algorithms could be created and updated more rapidly and with less labor. They could also be created in multiple spoken languages. We had developed a method for doing this based on an “ngram” text processing program adapted from business research technology (AT&T Labs). The method applies the ICD9 classifier to a training set of ED visits for which both the CC and ICD9 code are known. A computerized method is used to automatically generate a collection of CC substrings with associated probabilities, and then generate a CC classifier program. The method includes specialized selection techniques and model pruning to automatically create a compact and efficient classifier.

 

Objective

Our objective was to determine how closely the performance of an ngram CC classifier for the gastrointestinal syndrome matched the performance of the ICD9 classifier.

Submitted by elamb on
Description

The New York State Department of Health (NYSDOH) Syndromic Surveillance System consists of five components: 1. Emergency Department (ED) Phone Call System monitors unusual events or clusters of illnesses in the EDs of participating hospitals; 2. Electronic ED Surveillance System monitors ED chief complaint data; 3. Medicaid data system monitors Medicaid-paid over-the-counter and prescription medica-tions; 4. National Retail Data Monitor/Real-time Outbreak and Disease Surveillance System monitors OTC data; 5. CDC’s BioSense application monitors Department of Defense and Veterans Administration outpatient care clinical data (ICD-9-CM diag-noses and CPT procedure codes), and LabCorp test order data.

 

Objective

This poster presentation provides an overview of the NYSDOH Syndromic Surveillance System, including data sources, analytic algorithms, and resulting reports that are posted on the NYSDOH Secure Health Commerce System for access by state, regional, county, and hospital users.

Submitted by elamb on
Description

The Automated Hospital Emergency Department Data System is designed to detect early indicators of bioterrorism events and naturally occurring public health threats. Four investigatory tools have been developed with drill-down detail reporting: 1. Syndromic Alerting, 2. Chief Complaint Data Mining, 3. ICD9 Code Disease, and 4. Influenza-Like-Illness Tracking.

All analysis processing runs on the server in seconds using ORACLE PL/SQL stored procedures and arrays.

 

Objective

This paper details the development of electronic surveillance tools by Communicable Disease Surveillance, which have increased detection and investigation capabilities.

Submitted by elamb on
Description

The use of syndromic surveillance systems to assist with the timely detection of unusual health events first occurred prior to the events of September 11, 2001. In the State of Michigan a pilot project with emergency departments began collecting syndromic data in 2004. Little research has been done in rural settings which have unique characteristics such as having one medical facility for a large geographic region. In addition to being rural, the community in which the following study was done is a resort com-munity where the population differs between the summer and winter months in number and composi-tion. Another unique factor in this study is that there is little published literature utilizing triage and dis-charge syndromic groups as a means for determining system sensitivity and specificity.

 

Objective

This paper describes the analysis of sensitivity and specificity of an ICD-9 based syndromic surveillance system in a rural emergency department located in Northern Lower Michigan.

Submitted by elamb on
Description

Measures aimed at controlling epidemics of infectious diseases critically benefit from early outbreak recognition [1]. SSS seek early detection by focusing on pre-diagnostic symptoms that by themselves may not alarm clinicians. We have previously determined the performance of various Case Detector (CD) algorithms at finding cases of influenza-like illness (ILI) recorded in the electronic medical record of the Veterans Administration (VA) health system. In this work, we measure the impact of using CDs of increasing sensitivity but decreasing specificity on the time it takes a VA-based SSS to identify a modeled community-wide influenza outbreak. Objective This work uses a mathematical model of a plausible influenza epidemic to test the influence of different case-detection algorithms on the performance of a real-world syndromic surveillance system (SSS).

Submitted by elamb on
Description

BioSense currently receives demographic and chief complaint data from more than 360 hospitals and text radiology reports from 36 hospitals. Detection of pneumonia is an important as several Category A bioterrorism diseases as well as avian influenza can manifest as pneumonia. Radiology text reports are often received within 1-2 days and may provide a faster way to identify pneumonia than coded diagnoses. Objective To study the performance of a simple keyword search of radiology reports for identifying pneumonia.

Submitted by elamb on
Description

A number of different methods are currently used to classify patients into syndromic groups based on the patient’s chief complaint (CC). We previously reported results using an “Ngram” text processing program for building classifiers (adapted from business research technology at AT&T Labs). The method applies the ICD9 classifier to a training set of ED visits for which both the CC and ICD9 code are known. A computerized method is used to automatically generate a collection of CC substrings (or Ngrams), with associated probabilities, from the training data. We then generate a CC classifier from the collection of Ngrams and use it to find a classification probability for each patient. Previously, we presented data showing good correlation between daily volumes as measured by the Ngram and ICD9 classifiers.

 

Objective

Our objective was to determine the optimized values for the sensitivity and specificity of the Ngram CC classifier for individual visits using a ROC curve analysis. Points on the ROC curve correspond to different classification probability cutoffs.

Submitted by elamb on
Description

The primary objective of this study is to assess the capability of an advanced text analytics tool that uses natural language processing techniques to extract important medical information collected as part of routine emergency room care (history, symptoms, vital signs, test results, initial diagnosis, etc.). This information will be automatically, accurately, and efficiently converted from unstructured text into use-able information, which can then be used to identify cases that are the result of a naturally occurring outbreak or bioterrorism event. This information would then be available to (1) communicate to the treating physician, and (2) message back to organizations aggregating data at a higher level, such as the Centers for Disease Control and Prevention (CDC) and the Department of Homeland Security (DHS).

Submitted by elamb on
Description

 

Syndromic surveillance of emergency department(ED) visit data is often based on computerized classifiers which assign patient chief complaints (CC) tosyndromes. These classifiers may need to be updatedperiodically to account for changes over time in the way the CC is recorded or because of the addition of new data sources. Little information is available as to whether more frequent updates would actually improve classifier performance significantly. It can be burdensome to update classifiers which are developed and maintained manually. We had available to us an automated method for creating classifiers thatallowed us to address this question more easily. The “Ngram” method, described previously, creates a CC classifier automatically based on a training set of patient visits for which both the CC and ICD9 are available. This method measures the associations of text fragments within the CC (e.g. 3 characters for a “3-gram”) with a syndromic group of ICD9 codes. It then automatically creates a new CC classifier based on these associations. The CC classifier thus created can then be deployed for daily syndromic surveillance.

Objective

Our objective was to determine if performance of the Ngram classifier for the GI syndrome was improved significantly by updating the classifier more frequently.

Submitted by elamb on