Skip to main content

Lawson Andrew

Description

The ability to rapidly detect any substantial change in disease incidence is of critical importance to facilitate timely public health response and, consequently, to reduce undue morbidity and mortality. Unlike testing methods (1, 2), modeling for spatio-temporal disease surveillance is relatively recent, and this is a very active area of statistical research (3). Models describing the behavior of diseases in space and time allow covariate effects to be estimated and provide better insight into etiology, spread, prediction and control. Most spatio-temporal models have been developed for retrospective analyses of complete data sets (4). However, data in public health registries accumulate over time and sequential analyses of all the data collected so far is a key concept to early detection of disease outbreaks. When the analysis of spatially aggregated data on multiple diseases is of interest, the use of multivariate models accounting for correlations across both diseases and locations may provide a better description of the data and enhance the comprehension of disease dynamics.

Objective

This study deals with the development of statistical methodology for on-line surveillance of small area disease data in the form of counts. As surveillance systems are often focused on more than one disease within a predefined area, we extend the surveillance procedure to the analysis of multiple diseases. The multivariate approach allows for inclusion of correlation across diseases and, consequently, increases the outbreak detection capability of the methodology

Submitted by elamb on
Description

As technology advances, the implementation of statistically and computationally intensive methods to detect unusual clusters of illness becomes increasingly feasible at the state and local level [2]. Bayesian methods allow for the incorporation of prior knowledge directly into the model, which could potentially improve estimation of expected counts and enhance outbreak detection. This method is one of eight being formally evaluated as part of a grant from the Alfred P. Sloan Foundation.

Objective

To adapt a previously described Bayesian model-based surveillance technique for cluster detection [1] to NYC Emergency Department (ED) visits.

Submitted by knowledge_repo… on

The surveillance task when faced with small area health data is more complex than in the time domain alone. Both changes in time and space must be considered. Such questions as ‘where will the infection spread to next?’ and, ‘when will the infection arrive here’, or ‘when do we see the end of the epidemic?’ are all spatially specific questions that are commonly of concern for both the public and public health agencies.  Hence both spatial and temporal dimensions of the surveillance task must be considered.