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Objective
This study deals with the development of statistical methodol-
ogy for online surveillance of small area disease data in the form
of counts. As surveillance systems are often focused on more
than one disease within a predefined area, we extend the
surveillance procedure to the analysis of multiple diseases.
The multivariate approach allows for inclusion of correlation
across diseases and, consequently, increases the outbreak
detection capability of the methodology.

Introduction
The ability to rapidly detect any substantial change in disease
incidence is of critical importance to facilitate timely public
health response and, consequently, to reduce undue morbidity
and mortality. Unlike testing methods (1, 2), modeling for
spatiotemporal disease surveillance is relatively recent, and this
is a very active area of statistical research (3). Models describing
the behavior of diseases in space and time allow covariate effects
to be estimated and provide better insight into etiology, spread,
prediction and control. Most spatiotemporal models have been
developed for retrospective analyses of complete data sets (4).
However, data in public health registries accumulate over time
and sequential analyses of all the data collected so far is a key
concept to early detection of disease outbreaks. When the
analysis of spatially aggregated data on multiple diseases is of
interest, the use of multivariate models accounting for correla-
tions across both diseases and locations may provide a better
description of the data and enhance the comprehension of
disease dynamics.

Methods
When small area disease data in the form of counts are available,
Bayesian hierarchical Poisson models are commonly used to
describe the behavior of disease (5). In this study, we use the
convolution model (6) to describe the behavior of disease under
endemic conditions. Each time new observations become avail-
able, we show how the conditional predictive ordinate (CPO, 7),
which is a Bayesian diagnostic tool that detects unusual
observations, can be adapted in a surveillance context to detect
small areas of unusual disease aggregation (8).

For the joint analysis of two or more diseases, we introduce a
generalization of the shared component model (9) where the
underlying risk surface for each disease is separated into shared
and disease-specific components. We then propose a multi-
variate extension of the surveillance CPO that incorporates
information from the different diseases and, consequently,
facilitates the outbreak detection work. The multivariate
surveillance technique has the ability to detect outbreaks of
disease in either one or in a combination of diseases.

Results
We analyze weekly emergency room discharges for acute upper
respiratory infections, influenza, acute bronchitis, asthma and
pneumonia in 2009. The data are available by county for the 46
counties of South Carolina. The use of a shared component
model accounting for correlation across diseases provides a
better overall fit. In addition, the use of the multivariate SCPO
increases the statistical power for detection of outbreaks.
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