Influenza is a significant public health problems in the US leading to over one million hospitalizations in the elderly population (age 65 and over) annually. While influenza preparedness is an important public health issue, previous research has not provided comprehensive analysis of season-by-season timing and geographic shift of influenza in the elderly population. These findings fail to document the intricacies of each unique influenza season, which would benefit influenza preparedness and intervention. The annual harmonic regression model fits each season of disease incidence characterized by its own unique curve. Using this model, characteristics of the seasonal curve for each state and each season can be compared. We hypothesize that travelling waves of influenza in the 48 contiguous states differ dramatically in each influenza season.
Objective
In surveillance it is imperative that we know when and where a disease first begins. The objective of this study was to examine trends in traveling waves of influenza in the US elderly population. Preparedness for influenza is an important yet difficult public health goal due to variability in annual strains, timing, and shift of the influenza virus. In order to better prepare for influenza epidemics, it is important to assess seasonal variation across individual influenza seasons on a state-by-state basis. This approach will lead to effective interventions especially for susceptible populations such as the elderly.