Skip to main content

Tracking Dynamic Water-borne Outbreaks with Temporal Consistency Constraints

Description

Space-time scan statistics are often used to identify emerging spatial clusters of disease cases [1,2]. They operate by maximizing a score function (likelihood ratio statistic) over multiple spatio-temporal regions. The temporal component is typically incorporated by aggregating counts across a given time window, thus assuming that the affected region does not change over time. To relax this hard constraint on spatial-temporal “shape” and increase detection power and accuracy when tracking spreading outbreaks, we implement a new graph-based event detection approach which enables identification of dynamic clusters while enforcing temporal consistency constraints between temporally-adjacent spatial regions.

Objective:

We describe a novel graph-based event detection approach which can accurately identify and track dynamic outbreaks (where the affected region changes over time). Our approach enforces soft constraints on temporal consistency, allowing detected regions to grow, shrink, or move while penalizing implausible region dynamics. Using simulated contaminant plumes diffusing through a water distribution system, we demonstrate that our method improves both detection time and spatial-temporal accuracy when tracking dynamic waterborne outbreaks.

 

Submitted by Magou on