Skip to main content

Free Text

Description

Objective

We performed a gold-standard manual chart review for gastro-intestinal syndrome to evaluate automated detection models based on both structured and non-structured data extracted from the VA electronic medical record.

Submitted by elamb on
Description

Automated disease surveillance systems that analyze data by syndrome categories have been used to look for outbreaks of disease for about 10 years. Most of these systems notify users of increases in the prevalence of reports in syndrome categories and allow users to view patient level data related to the increase. For most situations this level of investigation is sufficient, but occasionally a more dynamic level of control is required to properly understand an emerging illness in a community. During the SARS outbreak, for example, the respiratory syndrome was defined too broadly to allow users to track SARS. However, some systems, allowed users to build dynamic queries that allowed them to search their data by using the SARS case definition [1]. Users could perform free-text queries that identified records containing specific keywords in the chief complaint or specific combinations of ICD9 codes. This advanced querying capability has proven to be one of the most used features used by monitors of disease surveillance systems. Objective: The objective of this project is to build a new, more flexible query interface that allows users to define and build their query as if they were writing a logical expression for a mathematical computation. The interface is designed so that it can be easily adapted to fit into nearly any syndromic surveillance system.The interface will be evaluated in future versions of the ESSENCE and BioSense Systems.

Submitted by elamb on
Description

In 2016, twelve states received Center for Disease Control and Prevention (CDC) Enhanced State Opioid Overdose Surveillance grants. The purpose of the grant is to explore enhanced data sources to track nonfatal opioid overdoses. One data source is ambulance runs. Wisconsin collects ambulance run information within the Wisconsin Ambulance Runs Data System (WARDS). Around 84% of all Wisconsin administrative services report into this electronic system. This is a timely, robust data system that has not been used previously to examine drug overdoses and presents an analytical challenge as it contains many free text fields.

Objective:

1. Develop an understanding of the benefits and challenges of analyzing free text fields on a population level.

2. Observe how a complex surveillance definition can be created from free text fields.

3. Observe how an ambulance data system can be used to describe the opioid epidemic.

Submitted by elamb on