Skip to main content

Chief Complaint

Description

Syndromic surveillance can be a useful tool for the early recognition of outbreaks and trends in emergency department (ED) data. In addition, as a more timely data source than traditional disease reporting, syndromic data may also be leveraged to identify individual disease cases, increasing the utility for first time or redundant case recognition.

San Diego County (COSD) performs daily ED syndromic surveillance. In order to assess the utility for early identification of specific conditions of public health interest (e.g., salmonellosis, meningitis, hazardous exposures, heat-related illness), a novel process entitled Priority Infectious Conditions Capture, was developed.

 

Objective

This paper describes an assessment of an enhanced surveillance process used to identify reportable diseases and conditions of public health importance from ED chief complaint data in COSD.

Submitted by elamb on
Description

In February of 2007, the Bureau of Epidemiology (BOE) received a request from Houston Department of Public Works to investigate a possible rise in gastrointestinal (GI) illness associated with complaints about poor water quality in a Northeastern Houston neighborhood. To investigate this complaint, BOE combined case report data with syndromic data from our Real-Time Outbreak Disease Surveillance (RODS). The Houston RODS collects and synthesizes real-time chief complaint data from 34 area hospitals and health facilities, representing approximately 70% coverage of licensed ER beds in Harris County. The system uses a Naïve Bayes Classifier to categorize ER chief complaints into 7 different syndromes, including GI illness.

 

Objective

To investigate public concern over a possible increase in GI illness associated with water quality complaints in Northeast Houston.

Submitted by elamb on
Description

In Connecticut (CT), several syndromic surveillance systems have been established by the Department of Public Health (DPH) to detect and monitor potential public health threats. The emergency department syndromic surveillance (EDSS) routinely categorizes chief complaint data into pre-defined syndrome categories, and also has the flexibility to define syndromes in real-time. Thus, DPH can use this system for situational awareness during public health events. Several recent events provided an opportunity to evaluate EDSS for this purpose: 1) two cases of cutaneous anthrax in CT in September 2007; 2) national and local media attention surrounding MRSA infections and published research in October 2007 and 3) the introduction of rotavirus vaccine through the Vaccines for Children Program in July 2006 following its licensing in February 2006.

 

Objective

To evaluate the performance of the CT EDSS system for situational awareness during specific public health events.

Submitted by elamb on
Description

The North Carolina Bioterrorism and Emerging Infection Prevention System (NC BEIPS) receives daily emergency department (ED) data from 33 (29%) of the 114 EDs in North Carolina. These data are available via a Web-based portal and the Early Aberration Reporting System to authorized NC public health users for the purpose of syndromic surveillance (SS). Users currently monitor several syndromes including: gastrointestinal severe, fever/rash illness and influenza-like illness. The syndrome definitions are based on the infection-related syndrome definitions of the CDC and search the chief complaint (CC) and, when available, triage note (TN) and initial temperature fields. Some EDs record a TN, which is a brief text passage that describes the CC in more detail. Most research on the utility of ED data for SS has focused on the use of CC. The goal of this study was to determine the sensitivity, specificity, and both positive and negative predictive value of including TN in the syndrome queries.

 

Objective

This study evaluates the addition of TN to syndrome queries used in the NC BEIPS.

Submitted by elamb on
Description

We have previously shown that timeliness of detection is influenced both by the data source (e.g., ambulatory vs. emergency department) and demographic characteristics of patient populations (e.g., age). Because epidemic waves are thought to move outward from large cities, patient distance from an urban center also may affect disease susceptibility and hence timing of visits. Here, we describe spatial models of local respiratory illness spread across two major metropolitan areas and identify recurring early hotspots of risk. These models are based on methods that explicitly track illness as a traveling wave across local geography.

 

Objective

To characterize yearly spatial epidemic waves of respiratory illness to identify early hotspots of infection.

Submitted by elamb on
Description

Of critical importance to the success of syndromic surveillance systems is the ability to collect data in a timely manner and thus ensure rapid detection of disease outbreaks. Most emergency department-based syndromic surveillance systems use information rou-tinely collected in patient care including patient chief complaints and physician diagnostic coding. These sources of data have been shown to have only limited sensitivities for the identification of cer-tain syndromes. Another potential source of information, which has not been previously studied, is the patient. Studies have shown that patients as well as parents can accurately report information about their own or their child’s illness. The value of of patient and parent self-reported informa-tion for disease surveillance systems has not been measured.

 

Objective

To determine whether patients and their families can directly provide medical information that enables syndrome classification.

Submitted by elamb on
Description

In order to detect influenza outbreaks, the New York State Department of Health emergency department (ED) syndromic surveillance system uses patients’ chief complaint (CC) to assign visits to respiratory and fever syndromes. Recently, the CDC developed a more specific set of “sub-syndromes” including one that included only patients with a CC of flu or having a final ICD9 diagnosis of flu. Our own experience was that although flu may be a common presentation in the ED during the flu season, it is not commonly diagnosed as such. Emergency physicians usually use a symptomatic diagnosis in preference, probably because rapid testing is generally unavailable or may not change treatment. The flu subsyndrome is based on a specific ICD9 code for influenza. It is unknown whether patient visits that meet these restrictive criteria are sufficiently common to be of use, or whether patients who identify themselves as having the flu are correct.

 

Objective

Our objective was to examine the CC and ICD9 classifiers for the influenza sub-syndrome to assess the frequency of visits and the agreement between the CC, ICD9 code and chart review for these patient visits.

Submitted by elamb on
Description

The BioSense system currently receives real-time data from more than 370 hospitals, as well as national daily batched data from over 1100 Department of Defense and Veterans Affairs medical facilities. BioSense maps chief complaint and diagnosis data to 11 syndromes and 78 sub-syndromes (indicators). One of the 11 syndromes is gastrointestinal (GI) illness and 6 of the subsyndromes (abdominal pain; anorexia, diarrhea, food poisoning, intestinal infections, ill-defined; and nausea and vomiting) represent gastrointestinal concepts.

 

Objective

To describe the potential use of BioSense chief complaint and final diagnosis data for GI illness surveillance.

Submitted by elamb on
Description

The Centers for Disease Control and Prevention BioSense has developed chief complaint (CC) and ICD9 sub syndrome classifiers for the major syndromes for early event detection and situational awareness. The prevalence of these sub-syndromes in the emergency department population and the performance of these CC classifiers have been little studied. Chart reviews have been used in the past to study this type of question but because of the large number of cases to review, the labor involved would be prohibitive. Therefore, we used an ICD9 code classifier for a syndrome as a surrogate by chart reviews to estimate the performance of a CC classifier.

 

Objective

To determine the prevalence of the sub-syndromes based on the ICD9 classifiers, and to determine the sensitivity, specificity, positive predictive value and negative predictive value of CC classifiers for the sub-syndromes associated with the respiratory and gastrointestinal syndromes using the ICD9 classifier as the criterion standard.

Submitted by elamb on
Description

Syndromic surveillance of emergency department (ED) visit data is often based on computer algorithms which assign patient chief complaints (CC) and ICD code data to syndromes. The triage nurse note (NN) has also been used for surveillance. Previously we developed an “NGram” classifier for syndromic surveillance of ED CC in Italian for detection of natural outbreaks and bioterrorism. The classifier is developed from a set of ED visits for which both the ICD diagnosis code and CC are available by measuring the associations of text fragments within the CC (e.g. 3 characters for a “3-gram”) with a syndromic group of ICD codes. We found good correlation between daily volumes by the ICD10 classifier and estimated by NGrams. However, because the CC was limited to 23 options based on the pick list, it might be possible to obtain results as good as the NGram method or better using a simpler probabilistic approach. Also, in addition to the CC, the Italian data included a free-text NN note. We might be able achieve improved performance by applying the n-gram method to the NN or the CC supplemented by the NN.

 

Objective

Our objective was to compare the performance of the NGram CC classifier to two discrete classifiers based on probabilistic associations with the CC pick list items. Also, we wished to determine the performance of the NGram method applied to CC alone, NN alone, and CC plus NN.

Submitted by elamb on