World Trade Center Responders Fatality Investigation Program -Methodologic Issues

Kitty Gelberg New York State Department of Health

Background

- Funded by CDC/NIOSH in September 2006 to maintain a registry of WTC responders who died after 9/11
 - Multiple studies have demonstrated health effects and symptoms in WTC response workers
 - No studies have examined fatalities occurring among response workers

WTC Programs

- WTC Health Registry
 - Voluntary for people who lived, worked or went to school in the area of the WTC disaster, or were involved in rescue and recovery efforts
 - Approximately 31,000 responders
- Medical Monitoring and Treatment Programs
 - Voluntary for responders/workers, except FDNY
 - Approximately 40,000 responders

Inclusion Criteria

- Death occurred between
 9/12/2001 6/30/2009
- Included first responders, workers and volunteers
- Worked at Ground Zero, the secure/exclusion zone, the morgue or waste stream corridor including the Fresh Kills landfill between 9/11/2001 6/30/2002

Criteria identical to WTC HR

Immediate Issues

- No record of who responded, volunteered, or worked at site – NO COHORT
- No idea of the number of workers NO DENOMINATOR
 - WTC HR estimated worker population using employer rosters, government agencies, unions, etc.
 - Estimated 91,469 workers
 - Medical monitoring and treatment programs estimate 60,000 – 70,000 workers

Methods to identify deceased

- Conducted daily internet searches using key words such as "Ground Zero", "WTC", "World Trade Center" and "9/11"
 - of online newspapers in NJ, CT, NY and eastern PA;
 used national obituary search engines
- Partnered with WTC Health Registry; Attorney; WTC Medical Monitoring and Treatment Program; FDNY for data sharing
- Contacted over 200 groups including unions, attorneys, worker advocacy organizations, NYS Sheriffs, ambulance services & fire companies; coroner/medical examiners, and companies that responded

Source of First Report

	Ν	%
Newspaper/Obituary	363	44.6
Attorney	150	18.4
WTC Health Registry	224	27.5
Unions	27	3.3
Other	50	6.1

Data Collected

- Full death certificate for confirmation of death and cause of death
- **Interviews** with personal representative of the estate on all non-traumatic/non-suicide fatalities that occurred since 1/1/2006
- **Medical records** from pertinent post-9/11/01 clinical visits, employee health exams, and doctor visits up to 2 years prior to 9/11/01
- Autopsy results including toxicologic results and ME notes
- **Employers** for confirmation of exposure

Multi-state study meant multiple Human Subjects Review

Analyses

- Conducted Proportionate Mortality Ratios (PMRs), Standardized Mortality Ratios (SMRs), and Proportionate Cancer Mortality Ratios (PCMRs)
 - Used PCMRs to compensate for an unusually high rate of deaths due to cancer
- Cause of death data is delayed from NCHS only available until 2006
 - Extrapolated cause of death data from 2006 for 2007 – 2009 using predicted values based on time trends from 1999 through 2006

Analyses

- No similar worker/volunteer population to compare rates to
- Used 3 comparison populations standardized for age and sex:
 - US General Population
 - New York City Region 16 counties including and surrounding NYC where 61% of identified deaths occurred
 - New York City

Denominator???

- Created sample cohort of 91,469 by extrapolating start dates at WTC, ages and sexes of the 30,665 responders in the WTC Health Registry population
- Compared demographics of WTC HR cohort of FDNY employees to FDNY WTC cohort
 - Were not similar

Strong possibility that WTC HR cohort is not representative of the WTC responder population

Outcomes

- Used NCHS list of 113 selected causes of death
 - Analyses were conducted only on those categories in which there were at least 5 deaths (n=42)
- A priori hypotheses:
 - Cancers due to colon, kidney, brain, NHL, multiple myeloma
 - Cardiovascular diseases, specifically hypertensive disease, ischaemic heart disease and cerebrovascular disease
 - Use of alcohol/drugs and injuries/poisonings

Other Analyses

- Calculated estimates of "true" number of deaths
 - Capture-recapture analyses comparing 4 different sources of reports
 - Media, Attorney, WTC HR, Other
 - Applied expected general US mortality rates to the generated random sample

Results

- 836 deaths met the inclusion criteria
 - Obtained death certificates for 785
 - Cause of death confirmed for another 29 individuals
 - Cause of death confirmed for 814 deaths
- Deaths identified in 42 states
 - ^o 38% in NYC
 - 22% in rest of NYS
 - 11% in NJ
 - 3% outside of US

Characteristics of the confirmed responder deaths

	Ν	%
Sex Male Female	710 104	87.2 12.8
Industry at WTC Fire department Law enforcement Government Volunteer Medical / EMS Construction Other Missing	125 125 154 129 54 146 67 14	15.4 15.4 18.9 15.8 6.6 17.9 8.2 1.7

Characteristics of the confirmed responder deaths

	Ν	%
Age at death		
<25	7	0.9
25-44	214	26.2
45-64	480	59.0
65+	113	13.9
Year of death		
2001	6	0.7
2002	37	4.5
2003	52	6.4
2004	112	13.8
2005	128	15.7
2006	148	18.2
2007	155	19.0
2008	127	15.6
2009	49	6.0

SMRs

Cause of death	US G	eneral Population	Γ	NYC Region		NYC
	Ν	SMR (95% CI)	Ν	SMR (95% CI)	Ν	SMR (95% CI)
Overall	814	0.31 (0.29 - 0.33)	510	0.39 (0.36 - 0.43)	311	0.39 (0.35 - 0.43)
Viral hepatitis	6	0.25 (0.09 - 0.54)	5	0.25 (0.08 - 0.59)	5	0.29 (0.09 - 0.67)
Human immunodeficiency virus disease	10	0.19 (0.09 - 0.34)	8	0.14 (0.06 - 0.27)	4 ^b	0.06 (0.02 - 0.16)
Cancers	342	0.58 (0.52 - 0.64)	222	0.70 (0.61 - 0.79)	129	0.68 (0.57 - 0.81)
Lip, oral cavity and pharynx	5	0.34 (0.11 - 0.79)	3 ^b	0.42 (0.09 - 1.24)	2 ^b	0.41 (0.05 - 1.47)
Esophageal	16	0.68 (0.39 - 1.10)	12	0.97 (0.50 - 1.69)	8	1.25 (0.54 - 2.46)
Stomach	9	0.62 (0.29 - 1.18)	7	0.57 (0.23 - 1.17)	4 ^b	0.51 (0.14 - 1.30)
Colon, rectum and anus	27	0.49 (0.33 - 0.72)	19	0.59 (0.36 - 0.92)	13	0.68 (0.36 - 1.16)
Liver and bile duct	15	0.47 (0.26 - 0.77)	11	0.48 (0.24 - 0.86)	9	0.48 (0.22 - 0.92)
Pancreatic	25	0.69 (0.45 - 1.01)	18	0.89 (0.53 - 1.41)	8	0.66 (0.28 - 1.29)
Larynx	5	0.83 (0.27 - 1.93)	4^{b}	0.88 (0.24 - 2.26)	1^{b}	0.30 (0.01 - 1.69)
Trachea, bronchus and lung	88	0.53 (0.42 - 0.65)	55	0.78 (0.59 - 1.02)	31	0.80 (0.54 - 1.13)
Melanoma of the skin	10	0.68 (0.33 - 1.25)	6	1.04 (0.38 - 2.26)	2^{b}	1.11 (0.13 - 4.01)
Breast	10	0.36 (0.17 - 0.66)	3 ^b	0.18 (0.04 - 0.51)	1^{b}	0.08 (0.00 - 0.44)
Ovary	5	0.60 (0.19 - 1.40)	4^{b}	0.83 (0.23 - 2.13)	3 ^b	0.96 (0.20 - 2.80)
Prostate	8	0.52 (0.22 - 1.02)	3 ^b	0.41 (0.08 - 1.19)	3 ^b	0.77 (0.16 - 2.25)
Kidney and renal pelvis	12	0.72 (0.37 - 1.26)	9	1.26 (0.58 - 2.39)	5	1.35 (0.44 - 3.15)
Bladder	7	0.68 (0.27 - 1.40)	2^{b}	0.42 (0.05 - 1.51)	2^{b}	1.12 (0.14 - 4.04)
Meninges, brain and other parts of central nervous system	n 19	0.78 (0.47 - 1.22)	15	3.14 (1.76 - 5.17)	10	1.20 (0.57 - 2.20)
Lymphoid, hematopoietic and related tissue	49	0.93 (0.69 - 1.23)	32	0.97 (0.66 - 1.37)	13	0.62 (0.33 - 1.06)
Non-Hodgkins lymphoma	18	0.99 (0.59 - 1.57)	15	1.22 (0.69 - 2.02)	6	0.70 (0.26 - 1.52)
Leukemia	20	0.91 (0.56 - 1.40)	10	0.82 (0.39 - 1.50)	4 ^b	0.63 (0.17 - 1.61)
Multiple myeloma and immunological	8	0.82 (0.35 - 1.61)	5	0.91 (0.29 - 2.11)	2^{b}	0.52 (0.06 - 1.87)
All other and unspecified malignancies	32	0.43 (0.29 - 0.60)	19	0.44 (0.27 - 0.69)	14	0.64 (0.35 - 1.07)
Diabetes mellitus	10	0.12 (0.06 - 0.22)	4^{b}	0.09 (0.02 - 0.23)	3 ^b	0.12 (0.02 - 0.34)
Cardiovascular disease	145	0.23 (0.19 - 0.27)	95	0.29 (0.23 - 0.35)	62	0.28 (0.21 - 0.36)
Hypertensive heart disease	10	0.20 (0.10 - 0.37)	9	0.22 (0.10 - 0.42)	6	0.14 (0.05 - 0.31)
Acute myocardial infarction	26	0.22 (0.14 - 0.32)	17	0.42 (0.25 - 0.68)	10	0.44 (0.21 - 0.81)

PCMRs

	US	General Population	NYC Region		NYC		
	Ν	PCMR	Ν	PCMR	Ν	PCMR	
Lip, oral cavity and pharynx	5	1.09 (0.35 – 2.54)	3	1.23 (0.25 – 3.59)	2	1.08 (0.13 – 3.91)	
Esophageal	16	1.04 (0.60 – 1.69)	12	1.40 (0.72 – 2.45)	7	1.79 (0.72 – 3.70)	
Stomach	9	1.47 (0.67 – 2.79)	7	1.34 (0.54 – 2.77)	4	1.60 (0.44 – 4.10)	
Colon, rectum and anus	27	0.62 (0.41 – 0.90)	19	0.64 (0.39 – 1.00)	13	0.89 (0.47 - 1.52)	
Liver and bile duct	15	0.69 (0.39 – 1.14)	11	0.68 (0.34 – 1.22)	9	1.05 (0.48 – 2.00)	
Pancreatic	25	1.24 (0.80 – 1.83)	18	1.40 (0.83 – 2.21)	8	2.04 (0.88 - 4.02)	
Larynx	5	3.42 (1.11 – 7.99)	4	2.67 (0.73 - 6.83)	1	5.26 (0.13 – 29.32)	
Trachea, bronchus and lung	88	0.56 (0.45 – 0.69)	55	0.68 (0.51 – 0.89)	31	0.85 (0.58 - 1.21)	
Melanoma of the skin	10	1.61 (0.77 – 2.96)	6	3.41 (1.25 – 7.42)	2	8.70 (1.05 - 31.41)	
Breast	10	0.90 (0.43 - 1.65)	3	2.05 (0.42 - 6.00)	1	1.12 (0.03 – 6.26)	
Ovary	5	3.55 (1.15 – 8.28)	4	5.88 (1.60 – 15.06	3	9.09 (1.87 – 26.57)	
Prostate	8	2.09 (0.90 - 4.12)	3	2.11 (0.44-6.17)	3	2.65 (0.55 – 7.76)	
Kidney and renal pelvis	12	1.63 (0.84 – 2.85)	9	3.90 (1.78 – 7.40)	5	12.82 (4.16 – 29.92)	
Bladder	7	3.18 (1.28 - 6.56)	2	2.63 (0.32 – 9.51)	1	6.67 (0.17 - 37.14)	
Meninges, brain and other CNS	19	0.79 (0.48 – 1.23)	15	4.87 (2.73 - 8.03)	10	2.01 (0.96 - 3.70)	
Lymphoid, hematopoietic tissue	49	0.82 (0.61 – 1.09)	32	0.84 (0.58 – 1.19)	13	0.80 (0.42 - 1.36)	
Non-Hodgkins lymphoma	18	1.30 (0.77 – 2.06)	15	1.32 (0.74 – 2.18)	6	1.12 (0.41 – 2.43)	
Leukemia	20	1.40 (0.85 – 2.16)	10	1.77 (0.85 - 3.25)	4	1.69 (0.46 – 4.34)	
Multiple myeloma and immun.	8	5.59 (2.42 – 11.02)	5	12.82 (4.16 – 29.92)	2	12.5 (1.51 – 45.15)	

Estimated Population Size

- Capture recapture analysis:
 - 1,567 deaths
 - 53% missing
- Expected general US mortality rates:
 - 3,135 deaths
 - 73% missing

Limitations

No record of who responded

- Unknown how many responders were there
- Used WTC Health Registry estimates
 - These differ from other researchers
 - Demographics of enrollees don't match demographics of decedents
- Incomplete death ascertainment
 - Results of PMR analyses unreliable
 - Reduced results from SMRs
 - Identified deaths may not be representative of all deaths

Limitations - Continued

- Expect that as the responder population ages, the number of deaths occurring each year would increase
 - Had a decrease in number of deaths for 2008 and half of 2009
 - Lack of NDI matches (used by WTC Health Registry)
 - Less mention of WTC work in obituaries

Limitations - Healthy Worker Effect

(mortality rates in a working population are lower than the general population)

- More apparent among those in physically demanding occupations or in occupations with specific physical fitness requirements in hiring practices
- An inappropriate comparison population can contribute to this
 - Used 3 comparison populations, but all were general citizens, not just workers

What did we learn?

- Disasters pose methodological challenges since systems are not in place to adequately track exposures or health outcomes before, during or after the disaster
 - Study designs examining health impacts can deviate from traditional epidemiology
 - WTC RFI was an attempt at developing a mortality registry relying primarily on observational research design

Where do we go from here?

- Need identification of the majority of responders
 Will miss a substantial number of survivors who carry out most of the initial disaster response and those responders who are self-dispatched
- Need cohesive human subjects review process that allows for medical and exposure information to be shared between researchers studying the same population
- Recommend WTC programs conduct NDI matching of their cohorts using internal comparisons

Questions?

