A Bayesian hidden Markov model for notifiable disease surveillance

Rochelle Watkins

Australian Biosecurity CRC

Curtin University of Technology Faculty of Health Sciences

Background

Aim

- to develop an automated method to monitor routinely collected notifiable disease data
- efficient, comprehensive
- enable response, inform management

Context

- data updated daily (0,0,0,0,0,0,0,0,...)
- postcode level
- detection goal: poorly defined, highly variable

Bayesian Hidden Markov Model

2 hidden states used to classify observed data based on pre-specified distributions

Intuitive

- model what we are interested in
- serial dependency a key component of the model

Interpretation

what is the probability of an outbreak today, given our data?

Bayesian Approach

Provides a formal method to incorporate expert knowledge

account for uncertainty in these unknowns

May be more robust to system changes over time

simplify maintenance

Computationally intensive for large scale spatiotemporal data

Model

t: time (day) i: area (postcode) z: state (endemic, outbreak) x[t,i] <- count[t,i] + count_neigh[t,i] x[t,i] ~ dpois(mu[z[t,i]]) z[t,i] ~ dcat(p[z[t-1,i],1:K])

7 day model structure

• analyse 7, 14, 28 days of data

Priors

```
Relatively uninformative constrained priors for means:
mu[1] ~ dgamma(10,10)
mu[2] ~ dgamma(40,20)|(mu[1],)
```

Gamma equivalent to Dirichlet prior on transition matrix: for(k in 1:K) for (l in 1:K) p[k,l] <- px[k,l]/sum(px[k,]) px[k,l] ~ dgamma(alpha[l],1)

Evaluation Scenario

Hepatitis A in Western Australia

- simulated outbreaks
- authentic baseline

4 replications of 150 days * 60+ trials

- size of outbreak
- clustering of cases

Small outbreak

Small outbreak

Large outbreak

Small less clustered – 14 dav

Large more clustered – 28 davs

Summary

Higher prior means were generally associated with decreased model sensitivity

- depends on the amount of data analysed
- Relative algorithm performance depends on the desired false alarm level

Short-baseline models are unlikely to be the best performing models

More work to be done...

- optimal analysis window length
- distance-based model
- other comparisons

further details: 'Disease surveillance using a hidden Markov model' <u>www.biomedcentral.com/1472-6947/9/39</u>

Thank you