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Objective
To enable prediction of clinical alerts via joint monitoring of
multiple vital signs, while enabling timely adaptation of the
model to particulars of a given patient.

Introduction
Cardiovascular event prediction has long been of interest in the
practice of intensive care. It has been approached using signal-
processing of vital signs (1�4), including the use of graphical
models (3, 4).

Our approach is novel in making data segmentation as well as
hidden state segmentation an unsupervised process and in
simultaneously tracking evolution of multiple vital signs. The
proposed models are adaptable to the individual patient’s vitals
online and in real time, without requiring patient-specific
training data if the patient-specific feedback signal is available.
Additionally, they can incorporate expert interventions, produce
explanations for alarm predictions and consider effects of
medication on state changes to reduce false alert probability.

Methods
The proposed model represents distributions of patient data
(vitals, state and treatment) as a dynamic Bayesian network. The
state of the patient is observed only when an alarm is triggered.
The arity of the state variable is estimated from data via E-M
optimization. The state and another discrete observable, treat-
ment (a vector of administered medications), influence the
continuous output variables that represent the vital signs. The
vitals are segmented adaptively using a Kalman filter to reflect a
potentially nonstationary periodicity of signals. The segmented
vitals are then represented with a continuous Semihidden
Markov Model. The trained system is capable of predicting
the patient’s state on-the-fly from currently observed vitals. It
can also learn on-the-fly whenever user feedback is available in
the form of correct labels of the predicted states.

Results
We conducted evaluations using the MIMIC II data (5). We
used ECG and respiratory rate as input vitals in an attempt to
predict heart failure alarms. The results shown in Table 1 were
obtained per-patient, by subsampling, using data from the
patients held out of the training set. The proposed approach
brings the AUC metric (area under the receiver operating

characteristic diagram) to 0.66 on average, the patient-specific
model offers an improvement, and the inclusion of treatment
information provides further benefits.

Conclusions
We have outlined a probabilistic modeling system that is capable
of predicting heart failure alarms using time series of vital signs.
It is able to learn the key parameters from data (state and
temporal resolution) and allows fast adaptation to personalized
features of a specific patient. Tests involving a limited set of vital
signs indicate improved predictability of heart failure events
when compared to a model relying only on prior probabilities.
The next steps involve adding more vital signs to the input space
to realize improvements of predictive accuracy.
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Fig. 1. Semi-Hidden Markov Model used in the prediction of clinical

alarms.

Table 1. AUC metric for the standard, patient-adapted and treatment-

aware models.

Patient AUC Patient-adapted AUC AUC with treatment info

1 0.67 0.68 0.70

2 0.61 0.63 0.65

3 0 71 0.72 0.72
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