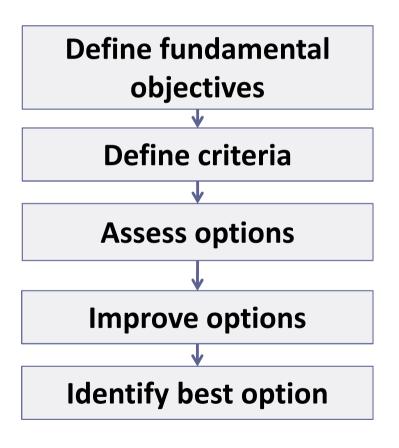


Best Practices in Multi-Criteria Evaluations

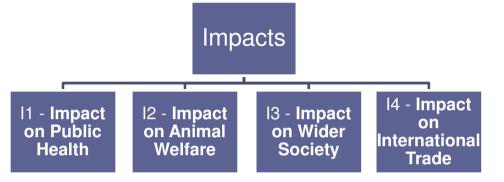
Dr Gilberto Montibeller

Department of Management London School of Economics


Best Practices

- Proper Definition of Criteria
 - Conduct a Value-Focused Evaluation
 - Observe Properties for the Criteria
 - Define Adequate Attributes
- Correct Elicitation of Preferences
 - Elicit Correctly Value Functions
 - Elicit Correctly Trade-offs (Criteria Weights)
- Suitable Modelling Processes

Value-Focused Evaluations

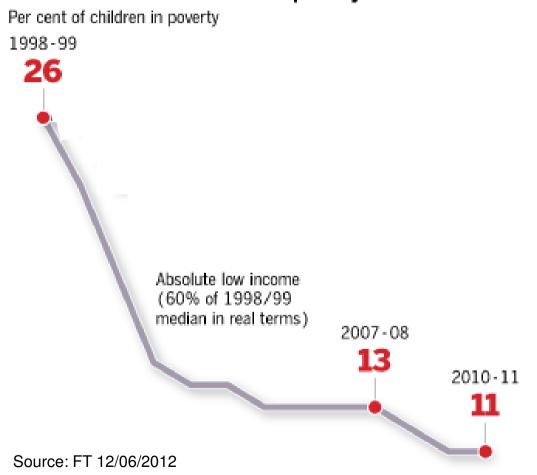

Advantages of this approach:

- Criteria measure achievement of fundamental objectives.
- It allows the evaluation of a large number of options.
- Supports search for good options, as values have been modelled.
- Focus is on maximising value and on designing better options.

Define Criteria Set

Properties

- Measure achievement of fundamental objectives
- Consider fundamental objectives only
- Make right decomposition of objectives into subobjectives
- Avoid double counting
- Make sure they are preferentially independent

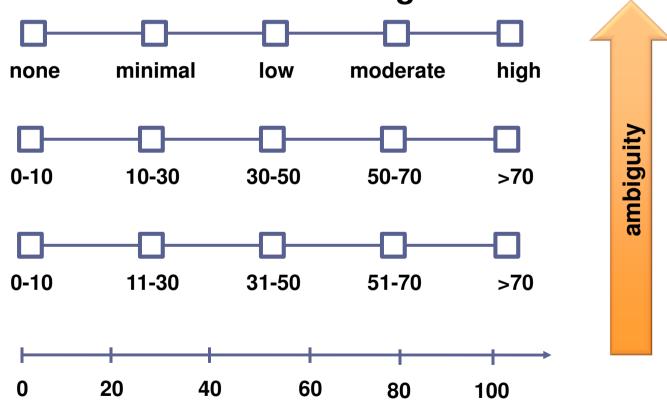


Defining a suitable attribute for an objective

The headline measure of child poverty has fallen ...

Is this objective being achieved (1998-2008)?

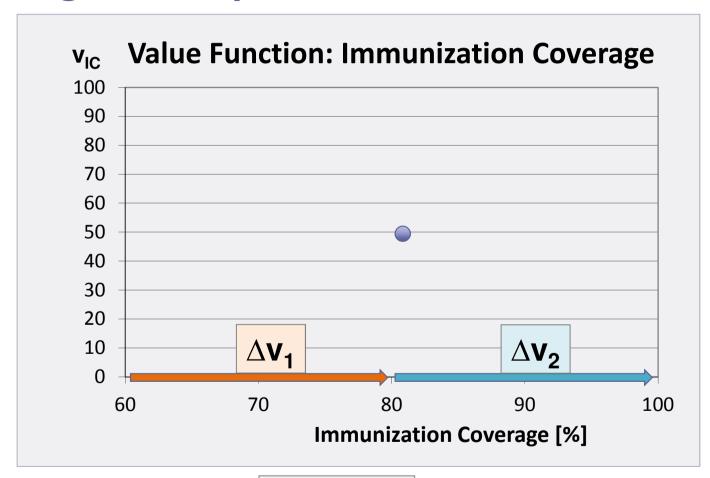
Or not so much?


The attribute must directly describe the consequences of interest!

Define Adequate Attributes

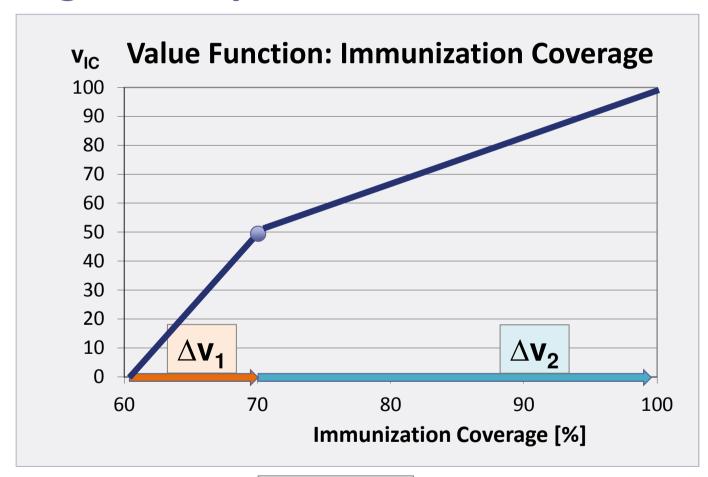
Immunization Coverage

Adapted from R. L. Keeney (1992) Value Focused Thinking. Harvard Univ. Press (p. 116)



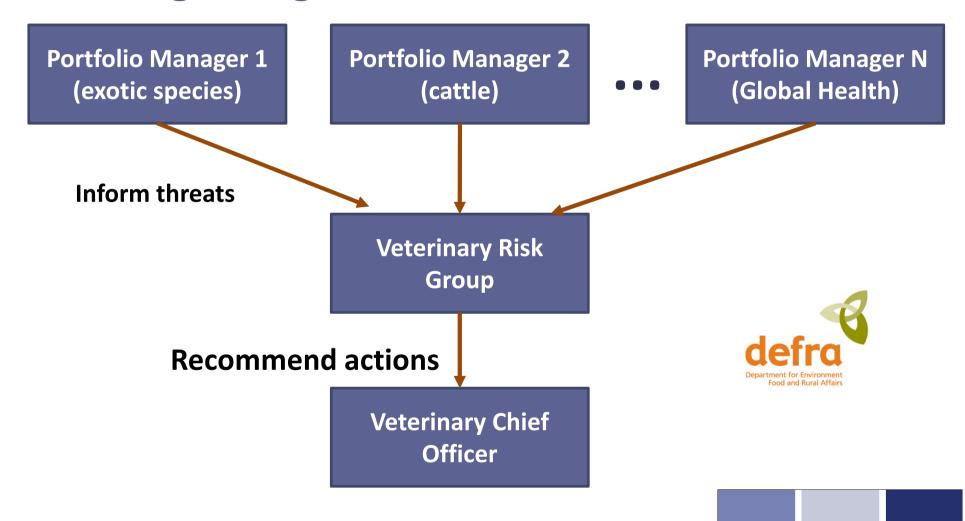
Eliciting Correctly Value Functions

$$\Delta V_1 > \Delta V_2$$

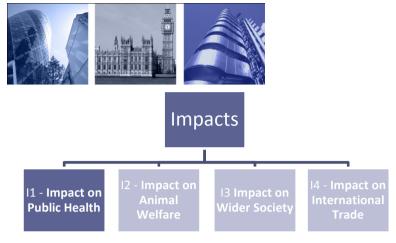


Eliciting Correctly Value Functions

$$\Delta \mathbf{v_1} = \Delta \mathbf{v_2}$$

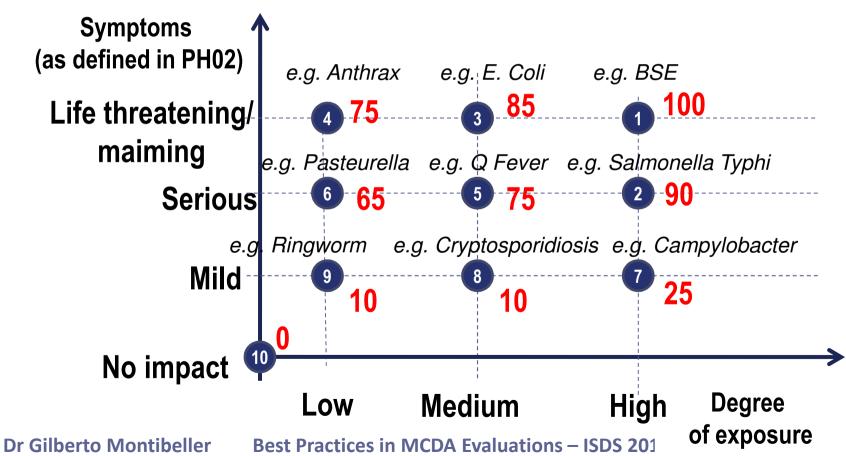


Assessing Emergent Animal Health Threats for Defra

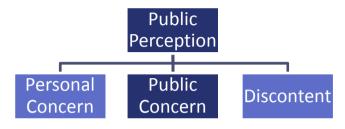


MAKING THE FARMING CONNECTION Bleeding calf syndrome on the rise

Best Practices in MCDA Evaluations – ISDS 2013



I1 - Impact on Public Health: The degree of potential impact on public health that the animal threat/disease may cause.



Public Concern

Severe suffering on species dear to the public High potential media interest (e.g. rabies in puppies)

- Some suffering on species dear to the public High potential media interest (e.g. killing of badgers to control TB)
- Some suffering on species the public is <u>less</u> concerned with <u>High</u> potential media interest (e.g. as BTV8 in cattle)
- Some suffering on species the public is not concerned with High potential media interest (e.g. Newcastle in poultry)
 - No suffering on species the public is not concerned with Low media interest (e.g. infectious salmon anemia in salmon)

Public Concern: The degree of potential public concerns about the animal threat /disease, in terms of animal suffering and affective connection to the species.

Elicit Correctly Criteria Weights

Best Immunisation Policy

Min Cost

Max Coverage

- Avoid questions of direct importance they are meaningless!
- Define suitable attributes
- Identify the ranges for each attribute
- Use questions that elicit value trade-offs

Elicit Correctly Criteria Weights

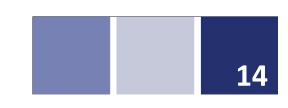
w_{cv} = 100/160 = 63%

Swing-weights:

Swing CT or CV?

Decision Maker:

"Swing CV"


Value Swing CV

= 100

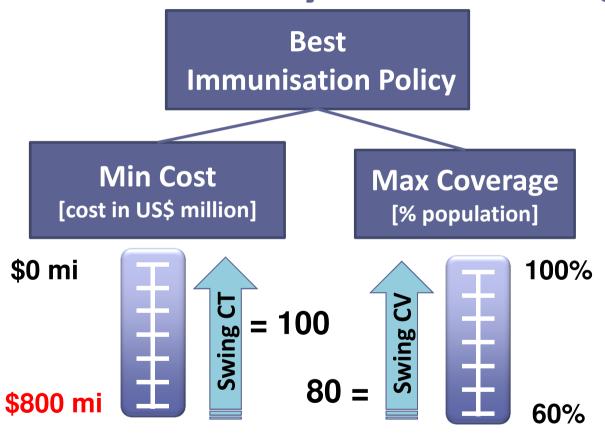
Value Swing CT?

Decision Maker:

"60"

 $W_{CT} =$

60/160 = 37%



Elicit Correctly Criteria Weights

 $W_{CT} = 100/180 = 55\%$

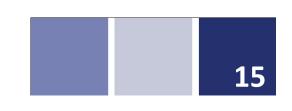
 $W_{CV} = 80/180 = 45\%$

Swing-weights:

Swing CT or CV?

Decision Maker:

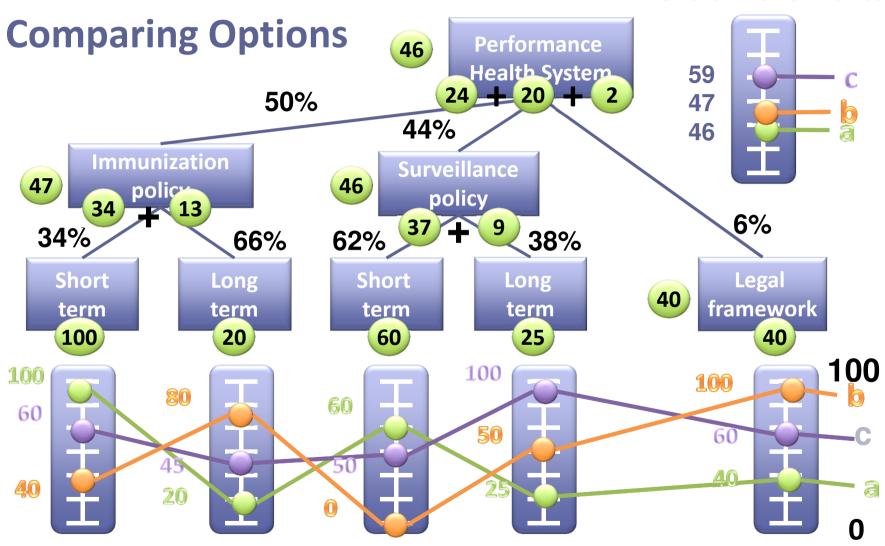
"Swing CT"

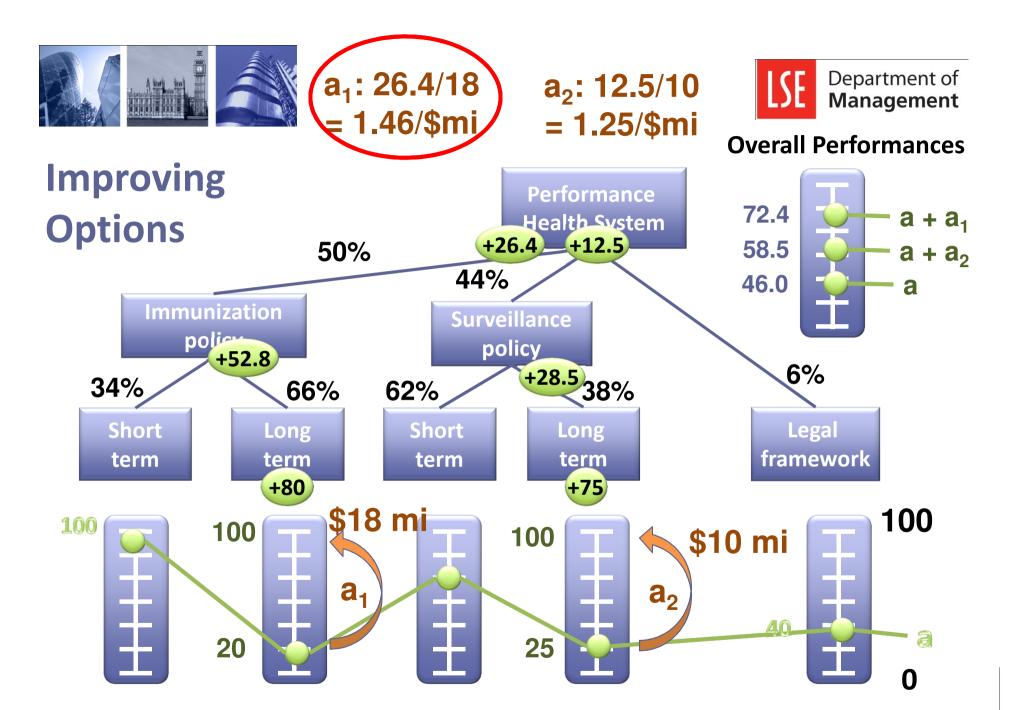

Value Swing CT

= 100

Value Swing CV?

Decision Maker:


"80"



Overall Performances

Modelling Processes: Participative and Interactive Models

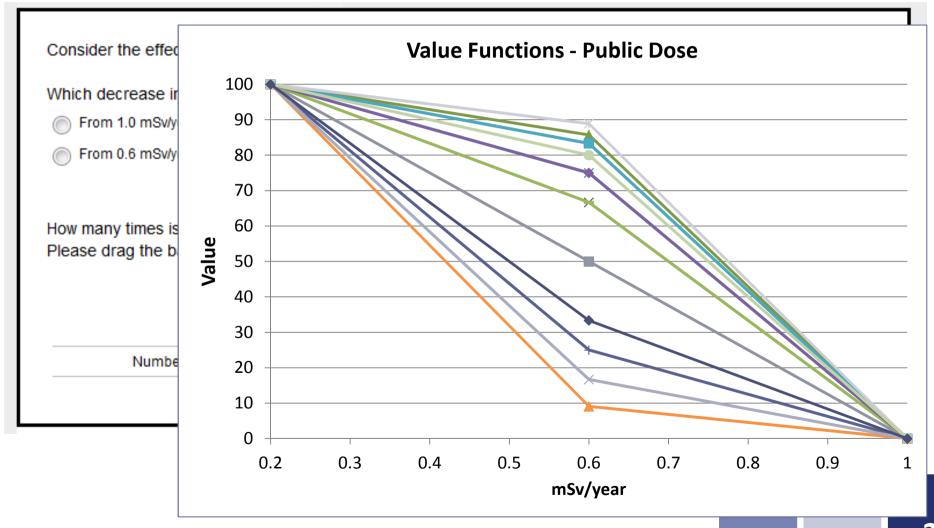
Facilitated Decision Analysis

Multi-Criteria Decision Support Systems

		Sort Impacts	Sort PO	Sort Capabilities	Prioritise VC	Prioritise PO/I	Breakd	own of Capabilit	ies
Threats	Risk Path	Impacts	Public Opinion	Capabilities ·	Impacts/Capabilities I/C	Public Opinion/Impacts PO/I	Assessment	C2 - Resources	C3 - Counter- Measures
Fay 2	Risk Path - please do not forget to input the risk path for this threat.	63.94	46.54	24.62	2.6	0.7	20	40	10
Fay 5		50.64	50.77	45.23	1.1	1.0	21	100	1
Fay 6		24.36	64.23	36.08	0.7	2.6	22	45	39
Fay 7		100.00	100.00	100.00	1.0	1.0	100	100	100
Fay 9		75.53	77.69	58.00	1.3	1.0	100	70	1
Victor 2	Risk Path - please do not forget to input the risk path for this threat.	63.94	46.54	24.62	2.6	0.7	20	40	10
Victor 5	·	50.64	50.77	45.23	1.1	1.0	21	100	1
Victor 6		24.36	64.23	36.08	0.7	2.6	22	45	39
Victor 7		100.00	100.00	100.00	1.0	1.0	100	100	100
Victor 9		75.53	77.69	58.00	1.3	1.0	100	70	1
Sumitra 2	Risk Path - please do not forget to input the risk path for this threat.	63.94	46.54	24.62	2.6	0.7	20	40	10
Sumitra 5	·	50.64	50.77	45.23	1.1	1.0	21	100	1
Sumitra 6		24.36	64.23	36.08	0.7	2.6	22	45	39
Sumitra 7		100.00	100.00	100.00	1.0	1.0	100	100	100
Sumitra 9		75.53	77.69	58.00	1.3	1.0	100	70	1
Or Gilber	to Montibeller	Best Pract	ices in MC	DA Evaluat	ions – ISDS 20	013			19

Modelling Processes: Online distributed evaluations

Nuclear Waste Management



Eliciting Value Functions Online

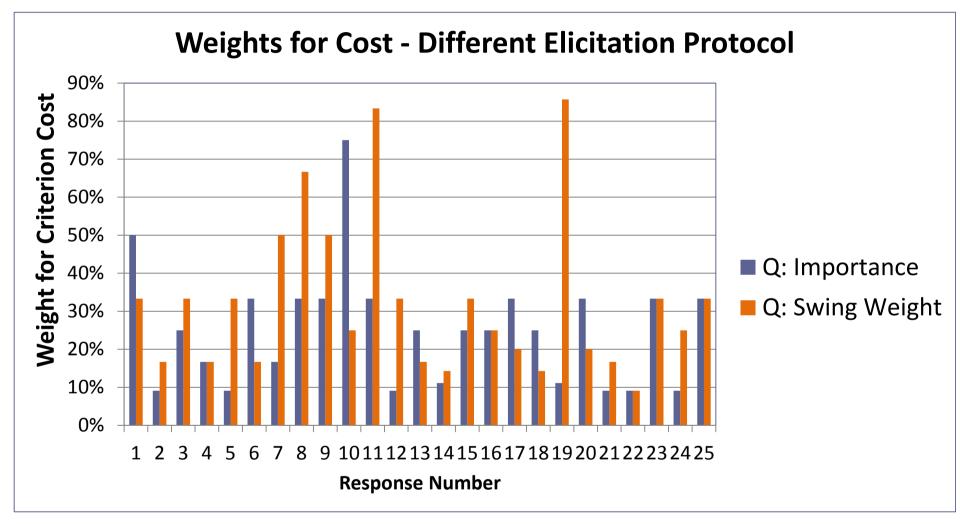
Eliciting Criteria Weights Online

Consider two disposal options, which are assessed taking into account only two main criteria: Safety of the Public (measured as public dose) Lifetime cost. Which option would you prefer? Option A: public dose is 0.5 mSv/year and lifetime cost is £5 million Option B: public dose is 0.6 mSv/year and lifetime cost is £1 million How many times the most preferred is option better that the least preferred option? Please drag the bar below. 10 Number of times:

Question: Swing?

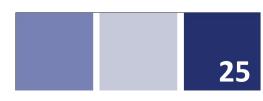
Eliciting Criteria Weights Online

Lifetime cost											
Safety of the Public											
			46	44.	1 42		4 .				4.0
ow many times is the mos ar below.	st impo	ortant cr	iterion v	vorth in	relation	to the le	east imp	ortant cr	iterion?	Please d	rag the
•	st impc	ortant cr	iterion v	vorth in	relation	to the le	east imp	ortant cr	iterion?	Please d	Irag the
•	st impo						eastimpo			Please d	Irag the


Question: Importance?



Are these concepts being used in practice?



Thank you for your attention!

Contact: Gilberto Montibeller

Email: g.montibeller@lse.ac.uk

Address:

Department of Management

London School of Economics

Houghton St., London, WC2A 2AE

Useful References

Franco, L.A. & Montibeller, G., 2010. Facilitated modelling in operational research. *European Journal of Operational Research*, 205(3), pp.489–500.

Franco, L.A. & Montibeller, G., 2011. Problem Structuring for Multicriteria Decision Analysis Interventions. In *Wiley Encyclopedia of Operations Research and Management Science*. Hoboken, NJ, USA: John Wiley & Sons

Keeney, R.L., 2013. Identifying, prioritizing, and using multiple objectives. *EURO Journal on Decision Processes*, 1(1-2), pp.45–67.

Free copy at: http://link.springer.com/content/pdf/10.1007%2Fs40070-013-0002-9.pdf

Tsoukias, A., Montibeller, G. et al., 2013. Policy analytics: an agenda for research and practice. *EURO Journal on Decision Processes*, 1(1-2), pp.115–134.

Free copy at: http://link.springer.com/content/pdf/10.1007%2Fs40070-013-0008-3.pdf