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Objective
Development of general methodology for optimal decisions
during disease outbreaks that incorporate uncertainty in both
parameters governing the outbreak and the current outbreak
state in terms of the number of current infected, immune and
susceptible individuals.

Introduction
Optimal sequential management of disease outbreaks has been
shown to dramatically improve the realized outbreak costs when
the number of newly infected and recovered individuals is
assumed to be known (1, 2). This assumption has been relaxed
so that infected and recovered individuals are sampled, and
therefore the rate of information gain about the infectiousness
and morbidity of a particular outbreak is proportional to the
sampling rate (3). We study the effect of no recovered sampling
and signal delay, features common to surveillance systems, on
the costs associated with an outbreak.

Methods
We develop a stochastic compartment model for disease
populations consisting of susceptible (S), infected (I), recovered
(R) and deceased (D) individuals. This model contains four
parameters determining the rates of these transitions: S0I,
I0R, I0D and S0R (vaccination). While all vaccination and
death transitions are observed completely, the infected and
recovered transitions are observed through sampling possibly
with a delay between the transition and when the information
can be used in a decision.

Sequential inference of parameters is performed using Baye-
sian updating, which is available in closed form when indepen-
dent gamma priors are assumed, and the current system state is
known. For the two sampled transitions, the associated para-
meters are updated in a manner that is consistent with how
information is gained during sampling so that the rate of
information gain is proportional to the sampling rate.

A cost structure is developed to weigh the outbreak morbidity
and mortality versus the cost of active outbreak control
(isolation, vaccination and increased sampling). The morbidity
cost is quadratic to account for increased costs that occur when
many individuals are sick simultaneously. Control costs include
fixed and running costs, which are a function of the current
number of infected individuals (3).

The effect of recovered sampling and delay is primarily
assessed by running separate scenarios that have combinations
of sampling and delay and calculating the average outbreak cost
under these scenarios. In addition, allowing recovered sampling
in a control allowed analysis of how often and when the optimal
outbreak management utilized this sampling.

Results
As a case study, we use a recent measles outbreak in Harare,
Zimbabwe, as our basis. At outbreak onset, we assume 20,000
susceptible individuals (�1% of total population in accordance
with vaccination coverage rates) and 20 infected individuals.
Priors for outbreak parameters are vague but informative, e.g., a
95% interval for infectiousness is 4 to 11 days.

Relative to the base-case scenario where immediate sampling
is performed on both newly infected and recovered individuals,
the following results are observed. Eliminating recovered
sampling increases average costs by 5%, a one-period delay
between transitions and control action increases costs 6%, a
two-period delay increases costs 14% and eliminating all
sampling increases costs by 34%.

When allowing increased sampling as a possible outbreak
control measure, the optimal decision was to utilize sampling of
infected and recovered individuals about 20% of the time.

Conclusions
Typical syndromic surveillance systems have taken the first step,
which is to provide a measure of the number of newly infected
individuals. Costs being equal, this research suggests this was
the best investment for surveillance. We hope future research
with different diseases and surveillance possibilities will eluci-
date where money should be spent in improving surveillance
practices.
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