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Objective
To present a statistical data mining approach designed to: (1)
Identify change points in vital signs, which may be indicative of
impending critical health events in intensive care unit (ICU)
patients and (2) Identify utility of these change points in
predicting the critical events.

Introduction
The status of each ICU patient is routinely monitored, and a
number of vital signs are recorded at subsecond frequencies (1),
which results in large amounts of data. We propose an approach
to transform this stream of raw vital measurements into a sparse
sequence of discrete events. Each such event represents sig-
nificant departure of an observed vital sequence from the null
distribution learned from reference data. Any substantial
departure may be indicative of an upcoming adverse health
episode. Our method searches the space of such events for
correlations with near-future changes in health status. Auto-
matically extracted events with significant correlations can be
used to predict impending undesirable changes in the patient’s
health. The ultimate goal is to equip ICU physicians with a
surveillance tool that will issue probabilistic alerts of upcoming
patient status escalations in sufficient advance to take preventa-
tive actions before undesirable conditions actually set in.

Methods
To generate potentially informative events from vital signs, we
first segment each data channel into sequences of k consecutive
measurements. We then perform Fourier transformation to
obtain spectral profiles of each segment of raw signal. Multiple
spectral profiles, extracted from periods of observation that are
considered medically benign, are then assembled to form a k-
dimensional flat table. We apply principal component analysis
to this, and the top p components are considered further. These

p components form a null space model of the expected normal
behavior of the given vital sign. We build one null space model
for each channel separately; this concludes the learning stage of
the process.

Each newly observed set of k consecutive measurements is
then processed through Fourier transform and projected onto
the p principal components of the corresponding null space
models. Over time of observation, these projections produce p
time series per measurement channel. We apply a cumulative
sum (CuSum) control chart to each of these time series and
mark the time stamps at which CuSum alerts are raised. These
moments correspond to circumstances in which the observed
spectral decomposition of a vital sign does not match what is
expected. We consider each such event as potentially informative
of near-future deteriorations in the patient’s health status. We
quantify the predictive utility of each type of these automatically
extracted events using training data, which contain actual health
alerts, in addition to the vital signs data. To accomplish the task,
we perform an exhaustive search across all pairs of CuSum
event types (inputs) and alert types (outputs) and identify pairs
with high values of the lift statistic (2). Input-output pairs with
lifts significantly greater than 1.0 can be expected to enable
prediction of health status alerts.

Results
Fig. 1 depicts an example result obtained with the presented
method. The CuSum Events (green spikes) obtained for the 9th
principal component of Modified Chest Lead 1 (MCL1) signal,
and the alerts (red spikes) are critical apnea conditions. We can
see that, for this patient, the CuSum events most of the time
precede apnea alerts, and they can potentially be used to predict
an upcoming apneas.

Conclusions
We have outlined a method of processing vitals collected
routinely at the bed side of ICU patients. It identifies signals
that can be predictive of upcoming adverse health events.
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Fig. 1. Increased frequency of CuSum events (top) typically precedes the

real apnea alerts (bottom).
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