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Introduction

Infectious disease registry data

Many countries have established surveillance systems for the routine
collection of infectious disease data.

Such surveillance data consist of individual-level, time-stamped and
geo-referenced case reports of notifiable diseases.

Publically available registry data are usually aggregated into time
series of counts of new infections of a specific disease, observed in
different areas or age groups.
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Introduction Examples of surveillance data

Example: SurvStat@RKI 2.0 in Germany
Custom online queries of aggregated data under the ’Protection against Infection Act’
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Introduction Examples of surveillance data

Weekly counts of different infectious diseases

Influenza A + B
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Introduction Examples of surveillance data

Weekly counts of measles infections
Weser-Ems region of Lower Saxony, Germany, 2001–2002

Time series of weekly counts Disease incidence (per 100 000 inhabitants)
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Introduction Examples of surveillance data

Weekly counts of measles infections
Count time series of the 15 affected districts
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Introduction Examples of surveillance data

Characteristics of surveillance data

Low number of cases

Seasonality

Occassional outbreaks

Dependence between areas, age groups, etc.

Underreporting, reporting delays

No information about the number of susceptibles

A model-based approach

We use statistical models for multivariate count time series

1 to answer relevant research questions

2 to predict future disease incidence
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Introduction Aims of the talk

Aims of the Talk

We follow the presentation in Meyer et al. (2016, Section 5) and
analyse the Weser-Ems measles dataset with models of successively
increasing complexity.

The corresponding R code is available as part of the vignette

“hhh4: Endemic-epidemic modeling of areal count time series”

in the R package surveillance available from CRAN.

Alternatively, the code can be viewed directly as file
hhh4_spacetime.Rnw from the package subversion repository.
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https://cran.r-project.org/web/packages/surveillance/vignettes/hhh4_spacetime.pdf
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Univariate modelling of surveillance time series
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Univariate modelling of surveillance time series The endemic-epidemic model

Univariate time series models

A statistical framework for surveillance counts Yt (Held et al., 2005):

Yt |Yt−1 ∼ Po(µt) with µt = νt + λYt−1

where Yt is the number of cases at time t = 1, 2, . . .

The disease incidence is additively decomposed into

endemic component νt
which may parametrically model regular trends and seasonality
similar to log-linear Poisson regression

epidemic (or autoregressive) component λYt−1

which captures disease spread (if time resolution ≈ serial time).

The autoregressive parameter λ may also depend on time in order to
capture seasonally varying severity of pathogens (Held and Paul,
2012).
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Univariate modelling of surveillance time series The endemic-epidemic model

Simulations with different values of λ

Yt |Yt−1 ∼ Po(µt) with µt = 2 + λYt−1 and Y0 = 1
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Autoregressive coefficient λ can be interpreted as epidemic proportion.

λ < 1 ensures stationarity with mean incidence ν/(1− λ).

In applications, the Poisson response distribution is often replaced by
the negative binomial to adjust for overdispersion.
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Univariate modelling of surveillance time series The endemic-epidemic model

Weekly counts of measles infections
Fitting a univariate model

Serial time of measles ≈ 10 days → use weekly (or biweekly) counts.

R> measlesModel_uni_0 <- list(end = list(f = ~1), ar = list(f = ~1), family = "NegBin1")

R> measlesFit_uni_0 <- hhh4(stsObj = counts.total, control = measlesModel_uni_0)

R> summary(measlesFit_uni_0, idx2Exp = TRUE, maxEV = TRUE)

Call:

hhh4(stsObj = counts.total, control = measlesModel_uni_0)

Coefficients:

Estimate Std. Error

exp(ar.1) 1.01946 0.09498

exp(end.1) 0.58555 0.15533

overdisp 0.39588 0.09097

Epidemic dominant eigenvalue: 1.02

Log-likelihood: -276.35

AIC: 558.69

BIC: 566.6

Number of units: 1

Number of time points: 103
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Univariate modelling of surveillance time series The endemic-epidemic model

Weekly counts of measles infections – Comparison of Fit
Seasonality in endemic vs. epidemic component
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Univariate modelling of surveillance time series The endemic-epidemic model

Weekly counts of measles infections – Comparison of Fit
Seasonality in endemic vs. epidemic component
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Multivariate modelling of surveillance time series

Outline
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Multivariate modelling of surveillance time series Spatio-temporal transmission

Multivariate modelling
Suppose now multiple time series are available (here by district):

µit : mean number of cases in district i at time t

µit = νit + λiYi ,t−1

+ φi
∑
j 6=i

wjiYj ,t−1

log(νit) = αi + population offset + seasonal trend + covariates

log(λi ) = βi + covariates

neighbour-driven / spatiotemporal component:
I log(φi ) = γi + covariates
I wji : transmission weights
I special case: first-order weights wji = 1 for neighboring regions

epidemic proportion now depends on all parameters and weights

→ “epidemic dominant eigenvalue”
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L. Held and M. Höhle Multivariate Count Time Series Modeling 17/ 38



Multivariate modelling of surveillance time series Spatio-temporal transmission

Choice of transmission weights
Use data on connectivity between regions

For livestock diseases: exchange of animals between farms (Schrödle
et al., 2012)

For human diseases: Use information on travel intensities of
individuals (Geilhufe et al., 2014)

Source: Max Planck Institute for Dynamics and Self-Organization
(http://www.mpg.de/4406928/)
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Multivariate modelling of surveillance time series Spatio-temporal transmission

Weekly counts of measles infections
Fitting a multivariate model with first-order weights

R> measlesModel_basic <- list(end = list(f = addSeason2formula(~1 + t,

+ period = measlesWeserEms@freq), offset = population(measlesWeserEms)),

+ ar = list(f = ~1), ne = list(f = ~1, weights = neighbourhood(measlesWeserEms) ==

+ 1), family = "NegBin1")

R> measlesFit_basic <- hhh4(stsObj = measlesWeserEms, control = measlesModel_basic)

R> summary(measlesFit_basic, idx2Exp = TRUE, amplitudeShift = TRUE, maxEV = TRUE)

Call:

hhh4(stsObj = measlesWeserEms, control = measlesModel_basic)

Coefficients:

Estimate Std. Error

exp(ar.1) 0.645403 0.079270

exp(ne.1) 0.015805 0.004200

exp(end.1) 1.080248 0.278839

exp(end.t) 1.001185 0.004264

end.A(2 * pi * t/52) 1.164231 0.192124

end.s(2 * pi * t/52) -0.634360 0.133500

overdisp 2.013839 0.285441

Epidemic dominant eigenvalue: 0.72

Log-likelihood: -971.72

AIC: 1957.44

BIC: 1995.72

Number of units: 17

Number of time points: 103
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Multivariate modelling of surveillance time series Spatio-temporal transmission

Weekly counts of measles infections
Fitted components in the initial model for selected districts
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Multivariate modelling of surveillance time series Effect of district-level covariates

Vaccination coverage among children in Weser-Ems region
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Multivariate modelling of surveillance time series Effect of district-level covariates

Weekly counts of measles infections
Effect of vaccination coverage

vi : vaccination coverage in district i

→ 1− vi : proxy for the fraction of susceptibles

Adding the term αvacc log(1− vi ) to the endemic predictor:

Estimate Std. Error

1.7181 0.2877

→ Strong evidence for an association
→ If the fraction of susceptibles doubles, the endemic measles incidence

increases by a factor of 21.72 = 3.3 (95% CI: 2.2 to 4.9).
→ AIC decreases from 1957 to 1917
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Multivariate modelling of surveillance time series Effect of district-level covariates

A gravity model to reflect commuter-driven spread

Scale susceptibility of districts according to population size ei

We add the term γpop log(ei ) to the spatiotemporal component:

> measlesFit_nepop <- update(measlesFit_vacc,

+ ne = list(f = ~log(pop)),

+ data = list(pop = population(measlesWeserEms)))

→ Strong evidence for such an agglomeration effect: the estimated
coefficient is 2.85 (95% CI: 1.83 to 3.87) and AIC decreases from 1917
to 1887.

Models where attraction to a region scales with population size are
called gravity models (Xia et al., 2004; Meyer and Held, 2014).
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Multivariate modelling of surveillance time series Effect of district-level covariates

Better models for spatial dispersal

Meyer and Held (2014) proposed to estimate the weights wji as a
function of the adjacency order oji between the districts.

A power-law model assumes wji = o−dji with decay parameter d .

Normalization of the weights is recommended and applied by default.

The resulting parameter estimate is d = 4.1 (95% CI: 2.0 to 6.2),
which represents a strong decay of spatial interaction for higher-order
neighbours.

As an alternative to the power law, weights can be also be estimated
seperately for each adjacency order.
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Multivariate modelling of surveillance time series Effect of district-level covariates

Weekly counts of measles infections
Estimated weights and power law
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Second−order model

AIC decreases further to 1882 for the power law.
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Multivariate modelling of surveillance time series District-specific heterogeneity

Incorporating district-specific heterogeneity

There are several options for the district-specific parameters αi , βi , γi :

constant across districts, e.g., αi = α

different fixed effects αi

different normally distributed random effects:
I Independent random effects
I Spatially correlated (CAR) priors
I Details in Paul and Held (2011)
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Multivariate modelling of surveillance time series District-specific heterogeneity

Weekly counts of measles infections
Estimated random effects in each component
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Multivariate modelling of surveillance time series District-specific heterogeneity

Weekly counts of measles infections
Fitted components in the random effects model for selected districts
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Probabilistic forecasting
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Probabilistic forecasting

Probabilistic forecasting

Probabilistic one-step-ahead forecasts are directly available.

Long-term forecasts can be generated through Monte Carlo
simulation.

Suitable summary statistics can be considered, for example the final
size.
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Probabilistic forecasting

Weekly counts of measles infections
Simulation-based long-term forecast for 2002
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The weekly mean of the simulations is represented by dots and the dashed lines correspond to
the 2.5th and 97.5th percentile. The observed counts are shown in the background.

Median final size is 424, observed is 779 (one-sided p=0.17)
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Probabilistic forecasting

Predictive model assessment
Calibration

Calibration is the statistical consistency of forecasts and observations.

Probability integral transform (PIT) histograms can be used to assess
calibration of one-step-ahead forecasts (Czado et al., 2009).

I PIT histograms are uniformly distributed for well calibrated forecasts.

Whether forecasts of a particular model are well calibrated can be
formally investigated by calibration tests for count data based on
proper scoring rules (Wei and Held, 2014).

Examples:
I the logarithmic score (used in CDC Epidemic Prediction Initiative)
I the ranked probability score (RPS)
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Probabilistic forecasting

Weekly counts of measles infections
PIT histograms of the one-week-ahead predictions during the second quarter of 2002
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p = 0.21 p = 0.60 p = 0.42

(p-values from RPS calibration test, n = 195)
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Discussion

Discussion

We presented a statistical framework for multiple count time series.

Meyer et al. (2016) also contains descriptions of similar
endemic-epidemic models for individual-level surveillance data.
Höhle (2016) links the different model classes.

Recent work combines social contact data between age groups with
the multivariate time series model (Meyer and Held, 2016).

Take home message:

1 Models are useful for prediction and understanding of infectious
disease spread.

2 The surveillance package offers an open-source and easy-to-use
implementation of the methods described.
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