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Objective
We propose a new, computationally efficient Bayesian method
for detection and visualization of irregularly shaped clusters.
This Generalized Fast Subset Sums (GFSS) method extends our
recently proposed MBSS and FSS approaches, and substantially
improves timeliness and accuracy of event detection.

Introduction
The multivariate Bayesian scan statistic (MBSS)1 enables timely
detection and characterization of emerging events by integrat-
ing multiple data streams. MBSS can model and differentiate
between multiple event types: it uses Bayes’ Theorem to
compute the posterior probability that each event type Ek has
affected each space-time region S. Results are visualized using a
‘posterior probability map’ showing the total probability that
each location has been affected. Although the original MBSS
method assumes a uniform prior over circular regions, and thus
loses power to detect elongated and irregular clusters, our Fast
Subset Sums (FSS) method2 assumes a hierarchical prior, which
assigns non-zero prior probabilities to every subset of locations,
substantially improving detection power and accuracy for
irregular regions.

Methods
We propose GFSS, a generalized Bayesian framework, which
includes both FSS and the original MBSS method as special

cases. As in FSS, we define a hierarchical prior over all 2N

subsets of the N locations. We first choose the center location
sc and size nA{1yN} uniformly at random. Given the
‘neighborhood’ Z consisting of sc and its n!1 nearest
neighbors, each location siAZ is independently included
with probability P, where the parameter P defines the
‘sparsity’ of the region. FSS assumes a uniform prior over
all 2n subsets of Z, and thus corresponds to GFSS with P¼0.5,
whereas MBSS only considers circular regions, and thus
corresponds to P¼1.

Naı̈ve computation of the posterior probability map using
GFSS would require us to compute and sum over an
exponential number of region probabilities, which is
computationally infeasible for N425. However, we show
that, for any value 0oPp1, the posterior probability map
can be computed without computing each individual region
probability, thus reducing the run time from exponential to
polynomial in N. In practice, this means that we can monitor
hospital data from 97 Allegheny County zip codes in less
than 10 s per day of data using GFSS (Figure 1).

Results
We evaluated the detection power and spatial accuracy of
GFSS for 10 values of the sparsity parameter P ranging from
0.1 to 1.0. We tested these methods on 10 differently-shaped
semi-synthetic outbreaks (200 injects of each type) injected
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Figure 1 Detection time and spatial accuracy for GFSS, as a function of the sparsity parameter P.
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into two streams of real-world Emergency Department data
from Allegheny County, PA. Figure 1 shows the average
detection time (days to detect at 1 false positive per month)
and spatial accuracy (overlap coefficient between true and
detected clusters) for each method. Our results show that the
optimal value of P depends strongly on the shape of the
outbreak: for compact clusters, the original FSS method
(GFSS with P¼0.5) minimizes detection time, while spatial
accuracy was maximized at P¼0.7. For highly elongated
outbreaks, however, GFSS with P¼0.2 achieved substantial
improvements as compared with FSS, including 0.8 days
faster detection and 10% higher spatial accuracy. These
results suggest that incorporating previous information
about the density or sparsity of an outbreak can improve
detection power. Additionally, GFSS enables us to more
accurately distinguish between multiple outbreak types with
different sparsity parameters. The optimal value of P for each
outbreak type can be learned automatically, using labeled
data from outbreaks of that type.

Conclusions
Our results demonstrate that GFSS can dramatically improve
event detection and visualization as compared with MBSS
and FSS, while still enabling fast, exact computation of the
posterior probability map.
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