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Objective
Our goal is to learn the underlying network structure along
which a disease outbreak might spread and use the learned
network to improve the timeliness and accuracy of detection.

Introduction
Disease surveillance data often have an underlying network
structure (e.g., for outbreaks that spread by person-to-person
contact). If the underlying graph structure is known, detection
methods such as GraphScan (1) can be used to identify an
anomalous subgraph, indicative of an emerging event. Typically,
however, the network structure is unknown and must be learned
from unlabeled data, given only the time series of observed
counts (e.g., daily hospital visits for each zip code).

Methods
Our solution builds on the GraphScan (1) and Linear Time
Subset Scan (LTSS) (2) approaches, comparing the most
anomalous subsets detected with and without the graph con-
straints. We consider a large set of potential graph structures and
efficiently compute the highest-scoring connected subgraph for
each graph structure and each training example using GraphS-
can. We normalize each score by dividing by the maximum
unconstrained subset score for that training example (computed
efficiently using LTSS). We then compute the mean normalized
score averaged over all training examples. If a given graph is close
to the true underlying structure, then its maximum constrained
score will be close to the maximum unconstrained score for many
training examples, while if the graph is missing essential
connections, then the maximum constrained score given that
structure will be much lower than the maximum unconstrained
score. Any graph with a large number of edges will also score close
to the maximum unconstrained score. Thus, we compare the
mean normalized score of a given graph structure to the
distribution of mean normalized scores for random graphs with
the same number of edges and choose the graph structure with
the most significant score given this distribution.

Results
We generated simulated disease outbreaks that spread based on
the zip code adjacency graph with additional edges added to
simulate travel patterns and injected these outbreaks into
real-world hospital data. We evaluated detection time and spatial
accuracy using the learned graphs for these simulated injects
(Fig. 1). This figure also shows the detection performance given
the true (adjacency plus travel) graph, the adjacency graph
without travel patterns and the average performance given
randomly generated graphs. We observe that the learned graph
achieves comparable spatial accuracy to the true graph, while the
adjacency graph has lower accuracy. Additionally, the learned
graph is able to detect outbreaks over a day earlier than the true
graph and 1.5 days earlier than the adjacency graph. Thus, our
method can successfully learn the additional edges due to travel
patterns, substantially improving detection performance.

Conclusions
We proposed a novel framework to learn graph structure from
unlabeled data. This approach can accurately learn a graph
structure, which can then be used by graph-based event
detection methods such as GraphScan, enabling more timely
and accurate detection of outbreaks, which spread based on that
latent structure. Our results show that the learned graph
structure is similar to the true underlying graph structure. The
resulting graph often has better detection power than the true
graph, enabling more timely detection of outbreaks, while
achieving similar spatial accuracy to the true graph.
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Fig. 1. Comparison of detection performance of the true, learned and

adjacency graphs.
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