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Current syndromic surveillance systems run multiple simultaneous univariate procedures, each focused on
detecting an outbreak in a single data stream. Multivariate procedures have the potential to better detect some
types of outbreaks, but most of the existing methods are directionally invariant and are thus less relevant to the
problem of syndromic surveillance. This article develops two directionally sensitive multivariate procedures and
compares the performance of these procedures both with the original directionally invariant procedures and with
the application of multiple univariate procedures using both simulated and real syndromic surveillance data. The
performance comparison is conducted using metrics and terminology from the statistical process control (SPC)
literature with the intention of helping to bridge the SPC and syndromic surveillance literatures. This article also
introduces a new metric, the average overlapping run length (AORL), developed to compare the performance of
various procedures on limited actual syndromic surveillance data. Among the procedures compared, in the simu-
lations the directionally sensitive multivariate cumulative sum (MCUSUM) procedure was preferred, whereas in
the real data the multiple univariate CUSUMs and the MCUSUM performed similarly. This article concludes with a
brief discussion of the choice of performance metrics used herein versus the metrics more commonly used in the
syndromic surveillance literature (sensitivity, specificity, and timeliness), as well as some recommendations for
future research.

syndromic surveillance, biosurveillance, terrorism, disease, detection, statistical process control, CUSUM

Abbreviations: AORL, average overlapping run length; ARL, average run length; CDC, Centers of Disease Control and
Prevention; CUSUM, cumulative sum; MCUSUM, multivariate cumulative sum; SPC, statistical process control.

INTRODUCTION

Many existing multivariate statistical process control
(SPC) procedures are directionally invariant, meaning that
they are designed to detect changes in a mean vector in
all directions. Examples of such procedures are Hotelling’s
c2 (1), Crosier’s multivariate cumulative sum (MCUSUM)
(2), and more recently the nonparametric method of Qui
and Hawkins (3). See Lowry and Montgomery (4) for a

more detailed discussion. The lack of directional sensitivity
can be a limitation of these methods, particularly when
practitioners are interested in detecting changes in some
directions more than others.
For example, the Centers for Disease Control and Preven-

tion (CDC) as well as many state and local health depart-
ments around the United States have started to develop
and field syndromic surveillance systems (5). Making
use of existing health care or other data, often already in
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electronic form, these surveillance systems are intended to
give early warnings of bioterrorist attacks or other emerging
health conditions. With such syndromic surveillance sys-
tems, it is important to flag increases in the relevant
measures quickly because, in terms of signaling either
a naturally occurring disease outbreak or a terrorist event,
decreases are generally irrelevant. See Fricker and Rolka
(6) or Stoto et al. (7) for a more detailed discussion. For
a review of the use of control charts in the broader
context of health care and public health surveillance, see
Woodall (8).
Current syndromic surveillance systems run multiple

simultaneous univariate SPC procedures, each focused on
detecting an increase in a single dimension. Woodall and
Ncube (9) first proposed the application of simultaneous
univariate CUSUMs in a multivariate application. Multiple
simultaneous univariate procedures have the advantages of
ease of implementation and interpretation, but they can be
less sensitive than multivariate methods to some types of
changes. However, unless the signal thresholds of the
multiple simultaneous procedures are properly set, they
can suffer from a higher than desired combined false
alarm rate.
Rogerson and Yamada (10) evaluated multiple univari-

ate CUSUMs versus a directionally invariant multivariate
CUSUM for monitoring changes in spatial patterns of dis-
ease. Recent work on directional multivariate procedures
includes Testik and Runger (11) and Stoto et al. (7). Tes-
tik and Runger (11), building on the work of Follmann
(12), Perlman (13), and Kudô (14), develop a number
of multivariate “one-sided” procedures. In particular, Tes-
tik and Runger develop and compare multivariate proce-
dures that look for 1) a shift in the mean vector
corresponding to an increase in one or more components
of the mean vector, 2) an increase in a pre-specified sub-
set of the components of a mean vector while allowing
the remaining components to either increase or decrease,
and 3) a shift of the mean vector in the direction of a
specific vector.
This work differs from that of Testik and Runger (11) in

that the relevant alternative in syndromic surveillance is
that at least one of the components of the mean vector
has increased. Unlike in case 1) above, which, for a zero
mean vector looks for vector shifts to the positive orthant,
here the goal is to look for all mean vector shifts except
those to the negative orthant. And, unlike in case 2), it is
not possible to pre-specify the subset of the components
to test for increases.
This work also differs from that of Stoto et al. (7) in that

it demonstrates how to evaluate the performance of two
directional multivariate procedures using metrics and termi-
nology common to the SPC literature (e.g., run length and
average run length (ARL)). As such, in recognition of the
fact that there is a great deal that the syndromic surveillance
and SPC communities can learn from each other, it is
intended to help bridge the two literatures. In addition, a
new metric, the average overlapping run length (AORL),
is introduced and developed to compare the performance
of various procedures on limited actual syndromic surveil-
lance data.

Terminology, notation, and assumptions

In the simple case of detecting a shift from one specific
distribution to another, let F0 denote the in-control distribu-
tion, which is the desired or preferred state of the system.
For syndromic surveillance, for example, this could be the
distribution of the daily counts of individuals diagnosed
with a particular complaint at a specific hospital or within
a particular geographic region under normal conditions.
Let F1 denote the out-of-control distribution; under the stan-
dard SPC paradigm, this would be a particular distribution
representing a condition or state that is important to detect
quickly. Within the syndromic surveillance problem, F1

might represent an elevated mean daily count resulting
from the release of a bioterrorism pathogen, for example.
The ARL is the performance metric used throughout the

SPC literature to compare procedures. Roughly speaking,
the run length is the length of time until a signal. In the syn-
dromic surveillance case where daily counts are observed,
the run length would be measured in units of days. Under
the assumption that the process is always in-control—that
is, all observations come from F0—the in-control ARL is
the mean time between false alarms. Denoted ARL0, a lar-
ger in-control ARL is to be preferred, all things being equal.
Given the distribution shifts from F0 to F1 at some point

in time, the delay (15) is the length of time from when the
shift to F1 occurred until a procedure signals. Referred to in
the SPC literature as the out-of-control ARL, the notation
ARL1 is used to denote the expected delay for a given F1

distribution. Hence ARL1 is the average time it takes a pro-
cedure to signal from the time the shift occurred.
In the SPC literature, procedures are compared in terms of

ARL, where the ARL0 is first set equally for two procedures
and then the procedure with the smallest ARL1, for
a particular out-of-control distribution, is deemed better.
All procedures have strengths andweaknesses, each perform-
ing better on certain types of out-of-control distributions.
Procedures that perform better across a range of F1 distribu-
tions expected to be encountered in practice in a particular
application are generally to be preferred for that application.
It is typical in SPC to assume that sequential observations

are independent and identically distributed, according to
either F0 or F1. In particular, the time series of observations
resulting from the F0 distribution is generally assumed to
be stationary, meaning that the in-control observations do
not exhibit any trends (periodic or otherwise) over time. In
addition, the out-of-control condition most frequently evalu-
ated is a jump change in the mean, meaning that the change
from F0 to F1 results from the in-control mean m0 jumping to
some out-of-control mean m1 = m0 + d for some d.
In industrial SPC applications, the assumption of indepen-

dence can be reasonably well met by taking observations
sufficiently far apart in time. In a similar way, the in-control
observations can be reasonably assumed to come from a sta-
tionary distribution as some control is exercised over the
process that produces the observations. These assumptions
are more dubiously made in the syndromic surveillance pro-
blem, where it is desired to take observations as frequently as
possible and where there is little or no control over the health
conditions that give rise to the data which are frequently
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observed or assumed to be nonstationary. Furthermore, out-
of-control conditions characterized by simple jumps in the
mean seem overly simplified for this problem.
Despite this, it is important to recognize that many of

the procedures currently in use as syndromic surveillance
systems, as well as those evaluated herein, were designed
under these assumptions. This may be more or less of a
problem in an actual syndromic surveillance application,
depending on the characteristics of the specific data, and it
is explored in more detail in the “Discussion” section.

Organization

In this article, I present and then evaluate modifications
of two existing multivariate methods—Hotelling’s c2 and
a multivariate CUSUM by Crosier (2)—to make them
directionally sensitive. The modifications are motivated
by the univariate counterparts of the procedures and how
those counterparts achieve directionality.

. The univariate counterpart to Hotelling’s c2 is the
Shewhart procedure (16), where directionality is achieved
by signaling only when an observation falls far enough out
in one particular tail of the distribution. For the “modified
Hotelling’s c2,” directionality is achieved by signaling
only when an observation falls within a particular region
of the “tail” of the multivariate distribution.

. In the univariate CUSUM, directionality occurs naturally
because the CUSUM statistic is bounded by zero in either
the positive or negative direction. For the “modified
MCUSUM,” directionality is achieved by bounding each
component of a CUSUM vector by zero in the desired
direction.

I focus on the Shewhart and CUSUM procedures because
these procedures are implemented in surveillance systems.
Following this, I compare and contrast the various proce-

dures’ performance via simulation and then demonstrate
their performance on an actual syndromic surveillance–
related data set. This article concludes with a discussion
and some recommendations for future research.

METHODS

Univariate procedures

This section briefly describes two of the most common
univariate procedures, Shewhart’s procedure and CUSUM.
See Introduction to Statistical Quality Control by
Montgomery (17) and the references therein for additional
detail.

Shewhart’s procedure. Shewhart’s procedure (16) is prob-
ably the simplest and best known of all SPC procedures.
The basic idea is to evaluate sequentially one observation
(or statistic) at a time, signaling when an observation that
is rare under F0 occurs. The most common form of the
procedure, often known as the X chart, signals when the
absolute value of an observed sample mean exceeds a
pre-specified threshold h, often defined as the in-control
mean value plus some number of standard deviations of
the sample mean.

More sophisticated versions of the Shewhart procedure
exist that look for increases in variation and other types
of out-of-control conditions. These versions are not consid-
ered here to keep the evaluations simple.
The procedure can be made directionally sensitive by sig-

naling for deviations in only one direction. For example, in
syndromic surveillance, only deviations in the positive
direction that would indicate a potential outbreak are
assumed to be important to detect. Thus, for a univariate
random variable X with a known in-control density f0, the
threshold h is chosen to satisfyZ 1

x¼h

f0ðxÞdx ¼ p,

where p is the probability of a false signal and is fixed at
some suitably small value. The algorithm proceeds by
observing values of X; it stops and concludes X * F1 at
the first time X > h. For a given out-of-control distribution
F1 and its associated density f1, assuming independence
between observations, the ARLs can be directly calculated
as ARL0 = 1/p and

ARL1 ¼
Z 1

x¼h

f1ðxÞdx
� ��1

CUSUM procedure. The CUSUM of Page (18) and Lorden
(19) is a sequential hypothesis test for a change from a
known in-control density f0 to a known alternative density
f1. The procedure monitors the statistic Si, which satisfies
the recursion

Si ¼ max½0, Si�1 þ Li�, ð1Þ
where the increment Li is the log likelihood ratio

Li ¼ log
f1ðXiÞ
f0ðXiÞ :

The procedure is usually started at S0 = 0; it stops and
concludes that X * F1 at the first time when Si > h, for
some pre-specified threshold h that achieves a desired
ARL0.
If F0 and F1 are normal distributions with means m and

m + d, respectively, and equal variances, then equation (1)
reduces to

Si ¼ max½0, Si�1 þ ðXi � mÞ � k�, ð2Þ
where k = d/2. This is the form commonly used, even when
the underlying data are only approximately normally dis-
tributed.
Note that, as the univariate CUSUM is bounded below at

zero, it is capable of looking for departures only in one
direction. If it is necessary to guard against both positive
and negative changes in the mean, then one must simulta-
neously run two CUSUMs, one of the form in equation
(2) to look for changes in the positive direction, and one
of the form

Si ¼ max½0, Si�1 � ðXi � mÞ � k�
to look for changes in the negative direction. When direc-
tional sensitivity is desired, say to detect only positive shifts
in the mean, it is only necessary to use equation (2).
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Directionally invariant multivariate procedures

This section describes two existing procedures that are
the multivariate counterparts to the Shewhart procedure
and CUSUM discussed in the previous section. The next
section then describes modifications to these methods to
make them directionally sensitive.

Hotelling’s 2. Hotelling (1) introduced the c2 procedure,
sometimes also called the T2 procedure. In this article, it
is referred to as the c2 procedure when the covariance
matrix is known and the T2 procedure when the covariance
matrix is estimated. For multivariate observations Xi [ R

d,
i = 1, 2,…, the procedure computes

c2i ¼ ðXi � mÞ0S�1ðXi � mÞ,
where S�1 is the inverse of the covariance matrix and m is
the mean vector from the in-control distribution F0. The
procedure stops at the first time when ci > h, for some
pre-specified threshold h that achieves a desired ARL0.
As in Crosier (2), the c2 procedure is called directionally

invariant because its ARL depends on m and S only though
the noncentrality parameter

n ¼ ½ðm� xÞ0S�1ðm� xÞ�1=2:
This means the procedure can detect any shift of statistical
distance n equally well, regardless of direction. Like the uni-
variate Shewhart procedure, because it uses only the most
recent observation to decide when to stop, the c2 can react
quickly to large departures from the in-control distribution
but will also be relatively insensitive to small shifts.

Crosier’s MCUSUM. The abbreviation MCUSUM, for
multivariate CUSUM, is used herein to refer to the proce-
dure proposed by Crosier (2) that at each time i considers
the statistic

Si ¼ ðSi�1 þ Xi � mÞð1� k=CiÞ, if Ci > k, ð3Þ
where k is a predetermined statistical distance and Ci =
[(Si�1 + Xi � m)0S�1(Si�1 + Xi � m)]1/2. If Ci � k, then
reset Si = 0. The procedure starts with S0 = 0 and sequen-
tially calculates

Yi ¼ ðS0
iS

�1
SiÞ1=2:

It concludes that X * F1 at the first time when Yi > h, for
some pre-specified threshold h that achieves a desired ARL0.
In terms of choosing k, Crosier (2) states, “In the univari-

ate [CUSUM] case, the quantity Si�1 + (Xi � m) is shrunk
towards 0 by k standard deviations. If this is to hold for
the multivariate case, k must satisfy k0S�1k = k2—that
is, k must be of length k, where the length is defined by
using the covariance matrix S.”
Crosier proposed a number of other multivariate CUSUM-

like algorithms but generally preferred this form after exten-
sive simulation comparisons. Pignatiello and Runger (20)
proposed other multivariate CUSUM-like algorithms as
well, but found that they performed similarly to Crosier’s.
It is worth noting that Crosier derived his procedure in

an ad hoc manner, not from theory, but found it to work

well in simulation comparisons. Healy (21) derived a
sequential likelihood ratio test to detect a shift in a mean
vector of a multivariate normal distribution. However,
although Healy’s procedure is more effective (has shorter
ARLs) when the shift is to the precise mean vector of F1,
it is less effective than Crosier’s for detecting other types
of shifts, including mean shifts that were close to but not
precisely the specific mean vector of F1.

Directionally sensitive multivariate procedures

For the syndromic surveillance problem, it is desirable to
focus the multivariate procedures in the direction of
increases in incident rates because, as was previously dis-
cussed, the goal is to detect natural disease outbreaks or bio-
terrorism events. This section describes two directionally
sensitive procedures that result from modifications to the
procedures presented in the previous section.

Modified Hotelling’s 2. A simple way to focus the c2 proce-
dure is to modify the stopping rule so that two conditions
must be met: 1) ci > h and 2) Xi [ S, where S is a subspace
of Rd that corresponds to a particular region of interest. The
idea is that the modified procedure will signal only when an
observation is far enough out in the “tail” of the distribution
and it falls within some region that would be more likely if,
say, one or more components of the mean vector increased.
To formalize this idea, let

GðaÞ ¼
�
x1, x2, . . . , xd :

Z
G
f0ðxÞdx ¼ 1� a

�
,

where if f0 is a multivariate normal density, then GðaÞ is an
ellipse centered at the mean containing probability 1 � a
with f0(x) constant on the boundary of the ellipse. Let

SðbÞ ¼
�
x1, x2, . . . , xd

:

Z 1

x1¼s1

Z 1

x2¼s2

. . .

Z 1

xd¼sd

f0ðxÞdx ¼ 1� b
�
, ð4Þ

where, for a suitably small b, S is the “upper right” quad-
rant of Rd that contains most of the probability of F0. Then,
for a particular F0, choose S so that b is small, say b &
0.01, and then choose G so thatZ

S
f0ðxÞdx�

Z
G\S

f0ðxÞdx ¼ p

for some small p chosen to achieve a particular ARL0. Note
that if b = 0, then this reduces to the directionally invariant
procedure. Also note that the definition of S above focuses
the procedure in the general direction of componentwise
increases in the mean, but equation (4) could certainly be
modified to focus in other directions.
To illustrate in R

2, consider an in-control distribution fol-
lowing a bivariate normal distribution with some positive
correlation, so that the probability contours for the density
of F0 are concentric ellipses with their main axis along 45-
degree line in the plane. As shown in figure 1a, you can
then think about S as the upper right quadrant (which
continues out to positive infinity in the positive x1 and x2
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directions) that almost encompasses the 100 · (1 � a) per-
cent probability ellipse. The stopping rule, then, is that an
observation must fall in the shaded region in figure 1a,
which, for p= 0.01, contains 1 percent of the F0 probability.
There are two reasons to use this region for S as com-

pared with, say, S0 based on the positive orthant as illu-
strated in figure 1b. First, if F1 represents a shift in the
mean vector in any direction corresponding to an increase
in one or more of the individual means, then a procedure
based on S will generally have a higher probability of sig-
naling than one based on S0. Hence, the ARL1s resulting
from the use of S will generally be smaller than the associ-
ated ARL1s for S0.
For example, consider a case where only the x1 component

of the mean vector increases, as indicated in figure 1c and d
by the dark arrow. In such a case, the probability associated
with the portion of F1 that falls in the shaded area is higher
for S than for S0 for all except small-to-moderate increases
(in which case the probability associated with the portion of

F1 that falls in the shaded area using S0 is slightly greater).
Furthermore, even for the most extreme shifts, the ARL1

using S0 is bounded below by 2 whereas the ARL1 for S
can get close to 1 for small bs.
Second, in syndromic surveillance, it could be important

to signal when one component of the mean vector increases
even as perhaps one or more of the other components
decrease. As illustrated in figure 1e and f, again the portion
of F1 that falls in the shaded area associated with S will
generally be larger than that which falls in the shaded
area resulting from S0, and thus S will be more effective
in detecting this type of mean change than S0.

Modified MCUSUM. Unlike some other multivariate
CUSUMs, Crosier’s MCUSUM formulation is easy to mod-
ify to look only for positive increases. As was described
in the Introduction, the motivation for this modification is
the univariate CUSUM equation (2), where directionality
is achieved because the CUSUM statistic is bounded
below by zero. In the modified MCUSUM, directionality
is similarly achieved by bounding each component of the
MCUSUM vector by zero.
In particular, for detecting positive increases, such as in

the syndromic surveillance problem, when Ci > k limit Si
to be positive in each dimension by replacing equation (3)
with Si = (Si,1,…, Si,d) where

Si, j ¼ max½0, ðSi�1, j þ Xi, j � mjÞð1� k=CiÞ�,
for j = 1, 2,…, d.

RESULTS

Performance comparisons via simulation

In this section, the various procedures are evaluated by
simulation using independent observations generated
according to either an in-control distribution F0 or an out-
of-control distribution F1. (The next section examines the
performance of the procedures on real syndromic surveil-
lance data that are autocorrelated.) Performance is assessed
by ARL, first determining the thresholds (h) to achieve
equal ARL0s and then comparing the ARL performance
under numerous out-of-control distributions resulting from
various shifts in the mean vector at time 0.
For the simulations, F0 is a six-dimensional multivariate

normal with a zero mean vector, m0 = {0, 0, 0, 0, 0, 0}, and a
covariance matrix S consisting of unit variances on the
diagonal and constant covariance r on the off-diagonals.
(In practice, assuming stationarity and that sufficient histor-
ical data are available, this can be achieved via standardiza-
tion.) The F1s have the same covariance structure but with
the mean vector shifted by some distance d,

d ¼ jm0 � m1j ¼
X6
i¼1

�
m1ðiÞ

�2

" #1=2

,

where the shift occurs in some number of dimensions n, 1 �
n � 6. For those dimensions with a shift, the shifts were

made equally: m1ð1Þ ¼ � � � ¼ m1ðnÞ ¼
ffiffiffiffiffi
d2

p
=n.

(a)

x2

x1F0

S
x2

x1F0

S'

x2

x1F0 F1 F1

S
x2

x1F0

S'

x2

x1F0

F1

S
x2

x1
F0

F1

S'

(b)

(c) (d)

(e) (f)

FIGURE 1. An illustration of S in (a) versus S0 in (b), where S0 is the
positive orthant. Also, illustrative comparisons between S and S0 for
two types of mean vector shifts: (c) versus (d) and (e) versus (f).
Except for small-to-moderate shifts in the mean, the ARL1 under S
will be smaller than the ARL1 under S0.
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The simulations were conducted in Mathematica 5.0 (22),
where the random observations were generated using the
MultinormalDistribution function. For the univariate
CUSUMs, I set k = 0.5 in equation (2). This is equivalent
to saying that it is important to be able quickly to detect
a one standard deviation increase in the mean. For the
MCUSUM and modified MCUSUM, I fixed k = {0.2,
0.2, 0.2, 0.2, 0.2, 0.2} in equation (3) so that for r = 0 the
univariate and multivariate procedures’ ks were equal:
k = {k0S�1k} & 0.5.
The in-control ARLs were set to 100 by empirically

determining the threshold h for each procedure. For the
multivariate procedures, this involved determining a single
threshold for each value of r (except for Hotelling’s c2 pro-
cedure, for which one threshold applies to all values of r).
For the simultaneous univariate procedures, which require a
separate threshold for each individual procedure, there was
no reason to favor one data stream over another, so all the
thresholds were set such that the probability of false alarm
was equal in all dimensions and so that the resulting
expected time to false alarm for the combined set of uni-
variate procedures was equal to the expected time to false
alarm of the multivariate procedure.
In general, it is quite simple to estimate the ARLs empiri-

cally via simulation. For a particular F0, choose an h and
run the algorithm r times, recording for each run the time
t when the first X > h (where each X is a random draw
from F0, of course). Estimate the in-control ARL asdARL0 ¼

Pr
i¼1 ti=r, adjusting h and re-running as necessary

to achieve the desired in-control ARL, where r is set large
enough to make the standard error of AcRL0 acceptably
small. Having established the threshold h for that F0 with
sufficient precision, then for each F1 of interest re-run the
algorithm s times (where s is often smaller than r), drawing
the Xs from F1 starting at time 1. As before, take the aver-
age of the ts to estimate ARL1.
Although I determined the necessary thresholds empiri-

cally via simulation, note that precise solutions and approx-
imations have been derived for selecting thresholds to
achieve desired ARLs for some procedures under some
conditions. The easiest is the univariate Shewhart procedure,

where for a given threshold, assuming independence
between observations, the precise ARL can be calculated
as described in the “Shewhart’s procedure” section. For
the CUSUM, computationally simple ARL approximations
(assuming independent normal observations) include those
of Reynolds (23) and Siegmund (24). Approximations
have also been derived for the univariate exponentially
weighted moving average (EWMA) procedure, which we
do not consider here, but which are being evaluated else-
where in the context of public health surveillance (e.g.,
Joner et al. (25)). Less work has been conducted for multi-
variate procedures, though Runger and Prabhu (26) have
derived approximations for the multivariate EWMA, and
Fricker (27) has derived an approximation for the nonpara-
metric repeated two-sample rank procedure.
That all said, all of these methods require at least inde-

pendence between observations, an assumption that is
unlikely to apply to actual syndromic surveillance data.
Furthermore, with the speed of today’s computers, it is a
simple matter to write a program to automate the empirical
estimation, as described in the previous paragraph, that
runs in a few seconds or minutes. Hence, my empirical
approach to determining thresholds, an approach that is
just as applicable to autocorrelated data as to data that
are independent.
In the simulations to follow, the modified multivariate

procedures’ performances are first compared with those of
their counterpart unmodified procedures. This quantifies
the directional sensitivity and effectiveness of the modified
procedures. This is followed by comparisons of the modi-
fied multivariate procedures with the application of simulta-
neous univariate procedures. The simultaneous univariate
procedures are implemented to be directionally sensitive
in the same direction as the modified multivariate proce-
dures. Finally, the best procedures from the previous com-
parisons are compared in an effort to determine whether a
single procedure is generally best.

Modified procedures versus original procedures. Figure 2
shows the improved performance of the modified c2 proce-
dure and the modified MCUSUM for almost all types of
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mean vector shifts where, as just described, the component-
wise shifts are in the positive direction. This is not surpris-
ing given that the modified procedures were designed to
look for positive mean shifts.
In figure 2, the various lines correspond to the number

of dimensions in m1 that shifted, and the horizontal axis is
the distance of the mean shift. For example, the n = 1
line shows the results for m1 = {d, 0, 0, 0, 0, 0}, where
the ARL was evaluated at d = 0.0, 0.2, 0.4,…, 3.4. The
n = 2 line shows the results for m1 ¼ f ffiffiffiffiffiffiffiffiffiffi

d2=2
p

,ffiffiffiffiffiffiffiffiffiffi
d2=2

p
, 0, 0, 0, 0g. And so on.

The vertical axis is the difference D between the ARL for
the original procedure and the modified procedure for a
given mean vector shift. Positive values indicate the modi-
fied procedure had a smaller ARL, so that for a particular
out-of-control condition the modified procedure had a
shorter time to signal. In the figure, D = 0 at d = 0.0 indi-
cates that the in-control ARLs were set equally for each
procedure before comparing the expected time to signal
for various m1s (within the bounds of experimental error,
where a sufficient number of simulation runs were con-
ducted to achieve a standard error of D of approximately
2 percent of the estimated in-control ARLs).
As previously mentioned, the modified procedures gener-

ally outperform the original procedures in detecting positive
shifts. Figure 2 shows this for the case of r = 0.3. Though
not shown, the results for other values of r, from r = 0 to
r = 0.9, are very similar.
In particular, the modified c2 outperforms Hotelling’s

c2 for all combinations of 1 � n � 6, 0.0 < d � 3.4, and
0 � r � 0.9. The modified MCUSUM outperforms Cro-
sier’s MCUSUM except for larger values of r with small
d and small n. For example, in figure 2, Crosier’s MCU-
SUM slightly outperforms the modified MCUSUM for n
= 1 with 0 < d < 0.6 or so. For r = 0.6, Crosier’s MCU-
SUM outperforms the modified MCUSUM on the order
of �6 < D < 0 or so for n = 1, 2 with 0 < d < 0.6. And,
for r = 0.9, Crosier’s MCUSUM outperforms the modi-
fied MCUSUM on the order of �9 < D < 0 or so for n =
1,…, 5 with 0 < d < 1.

For this work, moderate values of r are of interest, as the
syndromic surveillance data in the section “An application
to syndromic surveillance” exhibit only moderate correla-
tions, roughly on the order of 0 < r < 0.5. In addition, the sig-
nals of interest—that is, shifts in the mean vector—are those
consisting of small changes in multiple dimensions. (Indeed,
if the expected shift is in only a small number of dimensions
and/or the covariance r is large, then it is likely that univari-
ate methods would be more appropriate anyway.) With this
in mind, what is most notable in figure 2 is that as n
increases, the modified procedures do considerably better
than their counterparts, particularly for moderate ds.

Modified procedures versus univariate procedures. Given
that the modified c2 performs better than the original
c2 for this problem, figure 3 focuses on comparing the per-
formance of the modified c2 to six one-sided Shewhart pro-
cedures operating simultaneously. The left-side graph of
figure 3, constructed just like figure 2, shows that six simul-
taneous univariate Shewharts are more effective (have
shorter ARLs) than the modified c2 for r = 0.3. At best,
for large shifts, the ARL of the modified c2 approaches
the performance of the multiple univariate Shewharts,
and for small-to-moderate shifts the multiple univariate
Shewharts are clearly better.
The graph on the right side of figure 3 shows the perfor-

mance comparison for n = 3 and for various values of
r (0.0, 0.3, 0.6, and 0.9). Here we see that the better procedure
depends on r, where the modified c2 is better for values of
r near 0.0 or 0.9 whereas the simultaneous univariate
Shewharts are better for moderate values of r. Interest-
ingly, the modified c2 significantly outperforms the simul-
taneous univariate Shewharts when there is no correlation
(r = 0) and when the shift is only in three of the six
dimensions.
The results for the modified MCUSUM versus simulta-

neous univariate CUSUMs are presented in figure 4.
These results differ from those for the Shewhart-type proce-
dures in figure 3 in that the modified MCUSUM is gener-
ally better than the simultaneous univariate CUSUMs
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regardless of the value of r. In particular, in the left graph
of figure 4 the modified MCUSUM performance when r =
0.3 is somewhat better for small shifts (roughly 0.0 > d >
0.6 or so), and slightly worse than multiple univariate
CUSUMs for moderate-to-large shifts. Yet, in the figure
at the right we see that the modified MCUSUM is better
for small shifts for all values of r and performs only slightly
worse for moderate values of r combined with moderate-to-
large values of d.

Modified MCUSUM versus best other procedures. What the
previous simulations have shown is that the modified MCU-
SUM is generally better than the simultaneous univariate
CUSUMs. However, whether the modified c2 is better
than simultaneous univariate Shewhart procedures depends
on r. So, here the modified MCUSUM is compared with
the better of either the simultaneous univariate Shewhart
procedures or the modified c2 under the conditions that
favor each: the simultaneous univariate Shewhart proce-
dures for moderate covariance (r = 0.3) and the modified

c2 for high covariance (r = 0.9). The results are shown in
figure 5. In both comparisons, the modified MCUSUM pro-
cedure’s performance is better. The obvious conclusion,
then, is a preference for the modified MCUSUM, at least
in these simulations for a jump change in the mean vector
of multivariate normal distributions with moderate positive
covariance.
Now, all the figures up to this point have shown differ-

ences in ARL performance between two procedures. Figure 6
shows the ARLs for the modified MCUSUM for n = 3.
Results for n = 1, 2, 4, 5, 6 were similar; although the indi-
vidual r curves moved around, they largely stayed within
the same band/region. For example, for n = 1, the lowest
ARLs were achieved for r = 0.9 whereas for n = 6 the low-
est ARLs were achieved with r = 0.0.

An application to syndromic surveillance

In this section, to demonstrate how the procedures per-
form under real-world conditions, the CUSUM-based
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procedures—which performed better in the simulations—
are applied to data from five hospitals located in a large
metropolitan area. The data consist of respiratory “chief
complaint” counts by hospital for two-and-a-half years
from October 1, 2001, to March 31, 2004.
Chief complaints are broad categories—for example,

respiratory, gastrointestinal, unspecified infection, neurolo-
gical—into which patients are grouped before diagnosis.
They are intended to capture the primary symptom or rea-
son a patient sought care. Applying the procedures to
these data, which capture naturally occurring incident
rates and variation within hospitals as well as the covaria-
tion between hospitals, provides some insight into real-
world performance.
This analysis focuses on respiratory chief complaint data.

Respiratory chief complaints tend to include those patients
who come to emergency rooms with the flu and flu-like
symptoms. Given that such symptoms could also be leading
indicators of certain bioterrorism agents, monitoring res-
piratory chief complaints is thought to be useful in syndro-
mic surveillance for bioterrorism (28).
Figure 7 shows the smoothed respiratory chief complaint

counts by hospital. Each point is a 4-week moving average
using the data for 2 weeks before and 2 weeks after the
date. (Note that this centered moving average was used
only for illustration purposes in figure 7. The section on
“Implementation” describes how the actual data were used
in the application of the procedures.) A number of features
of the data are clear from the figure, including the
following points:

. The hospital moving averages do not exhibit an increas-
ing or decreasing trend, indicating the long-term inci-
dence rate for respiratory chief complaints is constant.

. Yet, there are visible “events” in the data that persist for
periods of time. For example, there are peaks across most
or all of the hospitals in January–February 2002, March–
June 2003, and December 2003–January 2004 that likely
correspond to flu outbreaks.

. These events are consistent with the CDC's aggregate data
on “percentage of visits for influenza-line illness reported
by sentinel physicians” (29) for the South Atlantic region
of the United States (where the city is located):

— The 2001–2002 flu season was characterized as “mild
to moderate in the United States.” The percentage of
visits in the South Atlantic region peaked in
February–March 2002. However “influenza activity
as reported by sentinel physicians in the Mid-Atlantic
and South Atlantic regions peaked during mid-to-late
January.”

— The 2002–2003 flu season was characterized as
“mild,” with the percentage of visits in the South
Atlantic region peaking in February–March 2003.
“Sporadic activity” was also reported in April and
May 2003.

— The 2003–2004 flu season “began earlier than most
seasons and was moderately severe.” The percentage
of visits in the South Atlantic region peaked in
December 2003.

. The hospital counts are positively correlated. Indeed, using
the first 6 months of the data, the correlations between all
pairs of hospitals lie in the interval 0.0 � r � 0.49.

In addition, there are significant differences in mean counts
between hospitals, indicating that some hospitals either
serve larger populations or serve populations with higher
respiratory illness rates (or both), as well as significant var-
iation in the raw counts around the smoothed mean.

Implementation. To implement the procedures, I first
divided the data up into a “historical” set of data, consisting
of the first 6 months (10/1/01-3/31/02), and a “future” set of
data—the remaining two years (4/1/02-3/31/04). As one
would do in practice, the idea was to use the “historical”
data to estimate various quantities necessary for the proce-
dures and then to calculate each procedure’s performance
using the “future” data.
In particular, using the first 6 months of data, I 1) deter-

mined that a square root transformation would make the
data approximately normally distributed, and 2) estimated
means and standard deviations for the transformed respiratory
counts for each hospital, as well as the variance-covariance
matrix for the joint distribution. I then used the sample
means and standard deviations to standardize the (square
root–transformed) data for each hospital. Given the differ-
ences in the raw rates, standardization is important to
ensure that equal weight is given to each hospital.
For the independent CUSUMs, I set k = 1 and used h =

2.125 (for each individual procedure) to achieve a com-
bined estimated in-control ARL of approximately 100. In
a similar way, for the modified MCUSUM, I set k =
{0.55, 0.55, 0.55, 0.55, 0.55}, so that k ¼ fk0bS�1kg1=2 ¼
1:0, and used h = 4.3 to achieve an estimated in-control
ARL of approximately 100.

Detecting flu outbreaks. Let us begin by illustrating how
well the procedures perform on the real data. In particular,
let us compare and contrast the modified MCUSUM and
individual CUSUM signals and consider whether those
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signals are consistent with the CDC’s information about
influenza-line illness as reported by the sentinel physicians.
Figure 8 displays the signal times for the various proce-

dures when they are run on the respiratory data. The figure
shows the smoothed means (of figure 7) and first signal
times overlaid. (“First signal time” means that repeated sig-
nals within 30 days of the first signal are suppressed for plot
clarity.) The signal times for the modified MCUSUM are
indicated by the dark vertical lines with the specific dates
at the top. The signal times for the individual CUSUMs
are indicated by the diamonds plotted on the relevant
smoothed mean. For example, figure 8 shows that the first

signal for the modified MCUSUM occurred on November
15, 2002, and that one of the individual CUSUMs also sig-
naled on the same day.
What this figure generally shows is that the modified

MCUSUM and the simultaneous individual CUSUMs per-
formed very similarly:

. As discussed, on November 15, 2002, both schemes
signaled on the same day.

. On May 16, 2003, the modified MCUSUM signaled, 1
day after an individual CUSUM signaled (May 15) and
after which one CUSUM signaled on May 27.
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. On September 26, 2003, the modified MCUSUM signaled,
after which two of the individual CUSUMs signaled, the
earliest on September 27, a difference of just 1 day.

. And, on December 16, 2003, the modified MCUSUM
signaled, after which four of the individual CUSUMs
signaled, the earliest of which was also on December 16.

There are only two times when the modified MCU-
SUM and the simultaneous individual CUSUM signals
diverge:

. On February 25, 2002, the modified MCUSUM signaled,
whereas none of the individual CUSUMs did so. Although

there was a visible increase in the mean of the first series, it
was not enough to signal the univariate CUSUM for that
period of time. We can speculate that there also seem to be
very slight increases in series 2 and 5 (reading figure 8 from
top to bottom), so perhaps the combination of the three
series was enough to cause the multivariate method to
signal.

. On April 14, 2003, one of the individual CUSUMs (series
4) signaled, whereas the MCUSUM did not. This signal
does seem to correspond to a slight increase in the mean
for the particular series, but it was not enough to cause the
modified MCUSUM to signal.
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Whether either one or both of these signals were true or
false is impossible to tell from just this data. Certainly,
one false signal each for the length of time monitored is
well within the false alarm rate.
How do these signals compare with the CDC’s sentinel

physician information? The MCUSUM signals on
February 25, 2003, and May 16, 2003, along with the asso-
ciated individual CUSUM signals, are consistent with the
CDC’s characterization of the 2002–2003 flu season,
where the CDC reported a mild season that peaked in Feb-
ruary–March 2003 with “sporadic activity” in April and
May 2003. In a similar way, the MCUSUM signals on Sep-
tember 26, 2003, and December 16, 2003, along with the
associated individual CUSUM signals, are consistent with
the CDC’s report of the 2003–2004 flu season, which the
CDC said “began earlier than mostseasons and was moder-
ately severe” and which peaked in December 2003.
Only the November 15, 2002, MCUSUM and CUSUM

signals do not seem to correspond to any events described
in the CDC’s summary of influenza-like illnesses. That
may be because the November 15 signal is false or it
may be because a localized outbreak of flu was not suffi-
ciently large to be detected/reported by the sentinel physi-
cian system. Although there is no way to reach a definitive
conclusion from just this data, a visual inspection of the
smoothed means in figure 8 around November 15 does
not show any unusual increases in the respiratory chief
complaint means, which would lead one to suspect this
was a false alarm.

Detecting bioterrorism. Running the procedures on real
data gives some idea of how the methods might perform
in detecting natural disease outbreaks under real-world
conditions. However, a bioterrorism event will occur as
a man-made outbreak among, or perhaps on top of, natural
disease outbreaks. To illustrate how well these procedures
might perform under such conditions, similar to what has
been done elsewhere in the syndromic surveillance
literature (see, for example, Goldenberg et al. (30)), on
the real (standardized, square root–transformed) data I
superimposed an artificial increase in the mean to get
some insight into how well these methods might detect
such a bioterrorism event.
The metric I used to compare performance in this sce-

nario is the AORL. Unlike the ARL, which averages inde-
pendent run lengths, for the real data the run lengths that
result from running each procedure starting at each day in
the data are averaged to calculate the AORL. That is, start-
ing on April 1, 2002, I ran each procedure until it signaled
and recorded the resulting run length. I repeated this process
starting on the next day, calculating the run length for April
2, 2002, and then cycled through all possible start dates in
the data (where if during a run the last date (March 31,
2004) was reached, the procedure continued by cycling
back through the data starting with April 1, 2002). The
resulting 731 run lengths were then averaged to calculate
the AORL (either for a particular outbreak condition or
under the condition of no outbreak).
The rationale for using this metric, instead of the ARL,

follows from the fact that a bioterrorism incident might

occur at any time. That is, a bioterrorism attack could
occur during a period of easy detection, say when natural
disease incident rates are low and so the bioterrorism signal
would more easily stand out, or perhaps during a period of
difficult detection, say during a severe flu outbreak. Hence,
arbitrarily choosing only 1 day or a small number of days
on which to insert the outbreak might not reflect how the
procedures would have performed had the incident occurred
at some other time in the data.
Instead, it is relevant to measure how the procedures per-

form allowing for an outbreak to occur on any day in the
data. The AORL is such a metric, where the average is
calculated using all the run lengths resulting from allowing
the outbreak to occur on each day in the data set. Not only
does this metric provide an overall measure of perfor-
mance, but in so doing it makes the most use of limited
syndromic surveillance data sets. As it turns out, and as
shown in the appendix, under some relatively mild condi-
tions the AORL is also approximately proportional to the
average squared run length.
I conducted two types of comparisons. In the first the

mean linearly increases over time, and in the second it
experiences a one-time jump change (and then remains con-
stant). The results are shown in figure 9, where on the left
side the mean vector experiences a one-time jump of dis-
tance D and on the right side the mean vector linearly
increases by d at each time period. In the top row, the
change occurs for only one hospital; in the middle row, it
occurs for three hospitals; and in the bottom row, it occurs
for all five hospitals.
That is, denoting the actual (transformed and standar-

dized) counts at time i as xi = {xi,1, xi,2, xi,3, xi,4, xi,5},
then for the plot in the top left the out-of-control data, start-
ing at time t, are

~xtþj ¼ fxtþj, 1 þ D, xtþj, 2, xtþj, 3, xtþj, 4, xtfþj, 5g
for j ¼ 0, 1, 2, . . . :

For the plot in the middle left,

~xtþj ¼ fxtþj, 1 þ D=
ffiffiffi
3

p
, xtþj, 2 þ D=

ffiffiffi
3

p
, xtþj, 3

þD=
ffiffiffi
3

p
, xtþj, 4, xtþj, 5g for j ¼ 0, 1, 2, . . . :

For the plot in the top right, the out-of-control state is

~xtþj ¼ fxtþj, 1 þ ðjþ 1Þ·d, xtþj, 2, xtþj, 3, xtþj, 4, xtfþj, 5g
for j ¼ 0, 1, 2, . . . :

For the plot in the middle right,

~xtþj ¼ fxtþj, 1 þ ð jþ 1Þ·d=
ffiffiffi
3

p
, xtþj, 2 þ ð jþ 1Þ

· d=
ffiffiffi
3

p
, xtþj, 3 þ ð jþ 1Þ·d=

ffiffiffi
3

p
, xtþj, 4, xtþj, 5g

for j ¼ 0, 1, 2, . . . :

And so on.
As shown in figure 9, the results using real data are con-

sistent with the simulations in the section “Performance
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comparisons via simulation”. In particular, the individual
CUSUMs tend to perform slightly better than the modified
MCUSUM when the shift occurs in only one dimension (the
top plots), whereas the modified MCUSUM tends to per-
form slightly better when the shift is in multiple dimensions
(the middle and bottom plots). However, we also see that
the difference in performance is smaller when the mean
increases linearly (the right column of plots) than when
there is a jump change in the mean vector (the left column
of plots).

DISCUSSION

In this article, I have demonstrated how to modify two
directionally invariant multivariate procedures to make
them directionally sensitive. The results of these and other
simulations not included here show, not unexpectedly, that
the modified multivariate procedures work better than their
original counterparts in the problem for which they were
designed. It is not unexpected as the modified procedures
specifically look for positive changes so that, when given
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FIGURE 9. Performance comparison of the modified MCUSUM procedure and multiple simultaneous univariate CUSUM procedures using the
real hospital data. On the left side the mean vector experiences a one-time jump of distance D, and on the right side the mean vector linearly
increases by d at each time period. In the top row, the change occurs for only one hospital; in the middle row, it occurs for three hospitals; and in
the bottom row, it occurs for all five hospitals.
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such changes, they should outperform their counterparts
that are not so designed.
An interesting result was the simulation comparison of

simultaneous univariate Shewhart procedures and the mod-
ified c2, which was mixed, with the better procedure
depending upon the covariance structure (i.e., r). In con-
trast, in the simulations, the modified MCUSUM generally
performed better than the simultaneous univariate CUSUMs
for all values of (positive) r. Furthermore, it also performed
better than the simultaneous Shewharts and the modified
c2 except in those cases where the shift d was moderate
to very large (in which case a statistical detection procedure
may not even be required).
These results thus suggest that when the covariance struc-

ture is well known or well estimated, the modified MCU-
SUM procedure is the preferred choice for monitoring
multivariate processes for directional shifts. However, the
use of the modified MCUSUM does come with some
costs. First, unlike Hotelling’s c2 procedure, the choice of
threshold, and hence the ARL performance of the proce-
dure, depends on the covariance structure of the data.
Second, practitioners are often less comfortable using mul-
tivariate procedures because they tend to feel such proce-
dures do not provide sufficient information about the
cause(s) of a signal. The modified MCUSUM is no different
in this regard, though because it is directional the practi-
tioner is at least assured that the signal is related to an
out-of-control condition of interest.
In the comparison between the modified MCUSUM and

the simultaneous individual CUSUMs using the real hospi-
tal data, the two schemes performed very similarly, particu-
larly for a linear increase in the mean and when applied to
just the raw data without an out-of-control condition super-
imposed (figure 8). It is not clear from this work whether
the similarity in performance is the result of having to
estimate the covariance matrix, the choices of k and k,
the presence of autocorrelation in the real data, or simply
an artifact of the specific data that were used. These results
do suggest that the current practice of using multiple simul-
taneous CUSUMs may provide the same performance as an
appropriate multivariate method, but additional research is
warranted.
Although the modified MCUSUM and simultaneous indi-

vidual CUSUMs exhibited similar performance, in general
each seemed to demonstrate a separate specific strength:
the modified MCUSUM is slightly better in detecting
small shifts in many or all dimensions, whereas the simul-
taneous individual CUSUMs seem better in detecting a shift
in only one dimension. This suggests a strategy of using
both in combination, where in the public health arena, for
example, individual hospitals might monitor their own
trends using individual CUSUMs, whereas a city, county,
or state public health department might monitor an area
using the modified MCUSUM. Alternatively, a public
health department might use both the individual CUSUMs
and the modified MCUSUM simultaneously, but interpret
their signals differently: an individual CUSUM signal indi-
cates the possibility of a localized event, whereas a modi-
fied MCUSUM signal indicates the possibility of a larger,
area-wide event.

That said, figures 6 and 9 should give public health prac-
titioners pause. These figures show that a bioterrorist attack
that manifests itself as a one standard deviation increase in
the mean may take anywhere from 10 to 20 time periods for
a procedure to signal (given a false alarm rate of 1 period
out of 100). If the data are daily counts, then on average
it is going to take more than a week and perhaps up to
3 weeks to detect such an event. This performance can be
improved by allowing a greater false alarm rate, but that
comes at the expense of investigating and adjudicating the
additional resultant signals. Of course, these methods may
still be considerably better than other alternatives, particu-
larly when the event is manifested as a relatively small
increase in rates. But it is important for practitioners to
recognize that these methods will not and cannot produce
signals instantaneously except for events that manifest
themselves via very large shifts.

Assessing performance

This research departs from the bulk of similar surveil-
lance research in the metrics it uses to assess performance.
Surveillance research typically assesses performance using
the metrics of sensitivity, specificity, and timeliness. See,
for example, the discussion in Stoto et al. (7) and Shmueli
(31). Using these metrics is akin to thinking of the problem
as a sequence of hypothesis tests. Doing so naturally leads
to thinking of the problem as a series of ROC curves and
then raises questions about how to combine the information
across the series of ROC curves to judge performance. See,
for example, Kleinman and Abrams (32).
In this article, I used the metric standard in the SPC litera-

ture, the ARL, which I find more naturally focuses on the
important dimension of the problem: speed of detection.
That is, whether the problem is industrial quality control
or bioterrorism incident detection, what is relevant is how
fast a procedure gives a true signal (for a fixed false signal
rate and a particular outbreak manifestation).
Among the difficulties in using sensitivity, specificity,

and timeliness is that they are a little redundant, meaning
that if one interprets “timeliness” as speed of detection,
then increases in sensitivity (for a set specificity) must
almost surely result in improvements in timeliness and
vice versa. Hence, for the purposes of measuring and com-
paring performance, it seems necessary to use only two of
the three metrics. Thus, if we think of the problem as asses-
sing performance in terms of timeliness for a fixed specifi-
city, then this is very much like saying assess performance
by ARL1 for a fixed ARL0.
Now, although I suggest that it is important to focus on

speed of detection, this does not necessarily imply that
the ARL is the most appropriate metric for the syndromic
surveillance problem. Indeed, note that the ARL is but
one possible summary statistic for the entire distribution
of run lengths that fully characterizes a procedure’s speed
of detection performance. For syndromic surveillance, it
might be more appropriate to use the median run length
or perhaps some other percentile of the run length distribu-
tion. If it is important to ensure that there is a high probabil-
ity of outbreak detection before some number of days (‘x’)
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after the onset, then one could use the number of run
lengths less than x as the appropriate performance measure.
Furthermore, some care must be taken when applying the

run length paradigm to the syndromic surveillance problem.
In the typical industrial SPC application, one assumes that
once a process goes out of control, it stays out of control.
Hence, the delay, as described in the section “Terminology,
notation, and assumption,” is always well defined. In syn-
dromic surveillance, an outbreak (“out-of-control”) condi-
tion can be short lived, and thus the concepts of the
delay, out-of-control run length, and ARL1 are more diffi-
cult to apply. One approach to resolving this difficulty is
to focus on those types of outbreaks that take some time
to manifest and to focus further on the initial period of
the outbreak—say the first x days. Then a metric such as
the probability of detecting the outbreak within those first
x days, defined as the fraction of run lengths less than or
equal to x, is still well defined.
Also note that focusing on the run length distribution as

the primary measure of performance does not imply that
this has been reduced to a one-dimensional problem.
Rather, in the simplest case, there are three relevant dimen-
sions that must be explored to evaluate a procedure’s per-
formance. In general terms, they are the F0 run length
performance, the F1 run length performance, and the out-
of-control (outbreak) condition. In the specific parameteri-
zation of the section “Performance comparisons via simula-
tion,” these are ARL0, ARL1, and d, which for a fixed ARL0

were shown as two-dimensional plots of ARL1 versus d.
This is the simplest case because the outbreak condition
could be expressed as a distance d between mean vectors.
For more complex syndromic surveillance scenarios, an
outbreak may have to be characterized by multiple parame-
ters. However, although it is more complex to analyze, the
approach remains the same: the procedure that exhibits
smaller ARL1s (or other run length summary statistics)
over a relevant range of false alarm rates and outbreak con-
ditions is to be preferred.
Though I used the ARL in the simulations in the section

“Performance comparisons via simulation,” I introduced a
new measure, the AORL, in the section “An application
to syndromic surveillance” to assess performance on real
data. There are a number of reasons why I did not use the
more traditional ARL metric. Chief among them is that the
real data—in fact, the syndromic surveillance problem in
general—depart from the traditional industrial setting in a
number of important ways. First, the idea of a process
being “in control” in the syndromic surveillance setting is
nebulous at best. In reality, there is no control over the
“process,” and the fluctuating data simply characterize the
background state of natural disease incidence. Second,
that background state could—and does in the case of
these data—contain natural disease outbreaks. So, it is
also not clear what “out-of-control” means in the syndromic
context. It could mean the occurrence of a natural disease
outbreak or a bioterrorism attack (or both) depending on
the purpose of the surveillance.
The result is that calculating an ARL0 by recording and

averaging sequential runs on the real data, while computa-
tionally possible, is not a particularly informative measure.

Part of the problem is that when a fluctuation occurs in the
data (whether because of a natural outbreak or perhaps just
because of an elevated incidence rate) the procedure tends
to signal repeatedly for the same outbreak or fluctuation.
Hence, simply averaging the sequential runs is not a good
measure of the average time to the signal of an outbreak
or attack as what is desired is the average time between
initial outbreak signals.
In addition, if the out-of-control condition one is inter-

ested in is a bioterrorism attack, such an attack will occur
within the natural disease incidence background state—
including naturally occurring outbreaks. If only one series
of sequential runs is used to calculate an out-of-control
ARL, it is not clear exactly how one would impose the
“attack” on top of the limited real data. That is, it is possible
for the attack to occur during a natural disease outbreak per-
iod, or perhaps during a period when the natural disease
incidence is unusually low, or at any other time. Hence,
the procedure’s performance could thus vary significantly
depending on the timing of the attack.
The AORL overcomes this particular problem by evaluat-

ing all possible times when the attack could occur in the
data. Hence, in the context of a bioterrorism attack occur-
ring on top of the pattern of natural disease incidence, it
provides a measure of how a procedure performs over all
possible times of attack. In addition, as shown in the appen-
dix, the AORL is approximately proportional to the average
of the squared run lengths. Hence, in a computational sense,
it is closely related to the ARL.

Future research

As was first discussed in the section “Terminology, nota-
tion, and assumptions,” the procedures used in this research
were derived from a number of assumptions, particularly
independent and identically distributed (i.i.d.) observations
from a stationary distribution. Lack of independence, if not
accounted for, results in higher false alarm rates (17). In this
work, I accounted for this by empirically determining the
thresholds to achieve a specific in-control ARL. Nonethe-
less, the question remains as to whether and when these
methods based on i.i.d. assumptions perform better than
those that explicitly account for autocorrelation (as well
as other features that commonly occur in syndromic surveil-
lance data, such as seasonal periodicities, long-term trends,
and day-of-the-week and holiday effects).
In addition, in the presence of autocorrelation arising

from nonstationarity, say an F0 in which the mean follows
a periodic cycle, the methods evaluated in this article proba-
bly need to be modified. That is, the methods and their eva-
luation in this article were designed around the data in
figure 7, which did not exhibit an obvious regular seasonal
or linear trend. Had they done so, then using some sort of
moving average for the estimation of the mean vector
would likely have been more appropriate than an average
based on a fixed historical period. Future work should
compare against data with annual and other periodicities
that reflect the more general syndromic surveillance and
public health problems. See, for example, the data plots in
Shmueli (31).

Directionally Sensitive Multivariate Statistical Process Control Procedures 15

Advances in Disease Surveillance 2007;3:1



Furthermore, even with our data, in the bioterrorism detec-
tion problem using a moving average to estimate the mean
(and, more generally, using a moving window of data to esti-
mate both the mean and covariance) might be more appropri-
ate to account for natural disease outbreaks. However, the
choices and trade-offs in how to construct a moving average
such that it incorporates information from natural disease
outbreaks in the estimation but not information from a bio-
terrorism attack are open and difficult questions.
Future work also should consider the effects of estimation

on the performance of the procedures. In particular, the mul-
tivariate procedures require the estimation of the entire co-
variance matrix, whereas the simultaneous univariate pro-
cedures require only estimation of the diagonal elements.
As discussed, whether and how this estimation affects the
performance of the procedures is not well known. In addi-
tion, although the effects of changing k in the CUSUM
are known, the effects of changes in k in the modified
MCUSUM are not and were not fully explored in this work.
I conclude by noting that the method that was applied to

make the multivariate procedures directionally sensitive can
be applied to other directionally invariant procedures, such
as the nonparametric method of Qui and Hawkins (3). How
the performance of those new methods compares with the
performance of the modified MCUSUM requires further
research.
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APPENDIX

This appendix demonstrates that the AORL introduced in
the section “Detecting bioterrorism” has a direct connection
to the run lengths that would result from running a proce-
dure sequentially through the data (r1, r2, r3, …, rk, defined
below). In fact, I show that the AORL is proportional to the
average of the squared sequential run lengths as the run
lengths get arbitrarily large.
To start with, let us define how one would estimate the

ARL for a series of data from n time periods, t = 1, 2,
3, …, n. Applying a procedure to the data series results in
a set of sequential run lengths, r1, r2, r3, …, rk, where the
run of length r1 starts at time t = 1, the run of length r2
starts at time t = r1 + 1, etc. By a run of length r1 starting
at time t = 1, I mean that the procedure that was started at
time t = 1 did not signal for r1 � 1 time periods and then
signaled at the next time period. The final run of length rk
was the last run to complete within the n periods, so that
r1 + r2 + _ + rk � n. Note that each data point in the series
was used in the computation of only one run length. Using
these run lengths, then, the ARL would be estimated as

dARL ¼ 1

k

Xk
i¼1

ri:

In contrast, in the section “Detecting bioterrorism,” over-
lapping run lengths were calculated for runs starting at each
time period. This results in a set of run lengths, s1, s2, s3, …,
sn, where the run of length s1 started at time t = 1, the run of
length s2 started at time t = 2, the run of length s3 started at
time t = 3, etc. Here, most points in the data series were
used in the computation of multiple run lengths. Using
these overlapping runs, the AORL is calculated as

AORL ¼ 1

n

Xn
i¼1

si:

To demonstrate that the AORL is proportional to the
average of the squared sequential run lengths, assume
r1 + r2 + _ + rk = n. That is, the final sequential run sig-
naled precisely on the last period in the data series. We
know s1 = r1 as the same procedure is being run on the
same data starting at the same time period. In a similar
way, we know sr1 + 1 = r2 and that every run length in
[r1, r2, r3, …, rk] has a matching run length in {s1, s2,
s3, …, sn}. What this means is that the signal times for

the sequential runs, {r1, r2, r3, …, rk}, are also signal
times in the larger set of runs, {s1, s2, s3, …, sn}.
Now assume that the signal times for the sequential runs

are the only signal times, so that, for example, for i = 1, 2,
3, …, r1 we have si = s1 � (i � 1). That is, the run lengths
for each run after s1 decrease by one for each time period up
until the time s1 signals. In a similar way for i = r1 + 1, r1 +
2, r1 + 3, …, r1 + r2, si = s2 � (i � 1). Etc.
Then, we can write

To walk through the expressions, the first equality is the
definition of the AORL. The second simply separates the
summation in the first expression into summations of
those sets of sequential runs that decrease by 1 in each sub-
sequent time period. The third equality takes each summa-
tion and replaces it by the number of runs in the summation
times the mean run length, and the fourth substitutes the
sequential run for the appropriate overlapping run. The
fifth equality is just an algebraic simplification of the previ-
ous expression and the final follows if we assume

P
ri is

negligible compared with
P

r2i .
The assumption that the overlapping runs signal only at

the same times as the sequential runs signal is somewhat
artificial, but not too far from what I observed empirically
in the data presented in the section “An application to syn-
dromic surveillance.” That is, in general, subsequent over-
lapping runs almost always did decrease by one in the
next time period. Violations of this occurred only when
the run lengths became very small (in single digits), at
which point the runs would frequently drop off to only
one or two.

AORL ¼ 1
n

Xn
i¼1

si

¼ 1
n

Xr1
i¼1

siþ
Xr1þr2

i¼r1þ1

siþ���þ Pn
i¼r1þ���þrk�1þ1

si

" #
¼ 1

n
r1

s1þ1
2

� �þr2
sr1þ1þ1

2

� �h
þ���þrk

sr1þ���þrk�1þ1þ1

2

� ��
¼ 1

n
r1

r1þ1
2

� �þr2
r2þ1
2

� ��
þ���þrk

rkþ1
2

� ��
¼ 1

2n

Xk
i¼1

riðriþ1Þ

’ k
2n

� �
1
k

Xk
i¼1

r2i :
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