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Objective
To cluster cities in the United States based on their levels of
mortality from influenza and pneumonia.

Introduction

Influenza is a major cause of mortality. In developed countries,
mortality is at its highest during winter months, not only as a
result of deaths from influenza and pneumonia but also as a
result of deaths attributed to other diseases (e.g., cardiovascular
disease). Understandably, much of the surveillance of influenza
follows predefined geographic regions (e.g., census regions or
state boundaries). However, the spread of influenza and its
resulting mortality does not respect such boundaries.

Methods

Data on influenza and pneumonia mortality were collected from
97 cities over 11 years (1996 through 2007), as reported in the
MMWR (1). We used a novel method of computing the pairwise
distance between two time series based on the Mahalanobis
Distance derived from the time-series state-space-modeling
framework. Mahalanobis Distance is a scale invariant form of
Euclidean Distance that also takes correlations of the data set
into account. This is an extension of a previously devised
Kullback-Leibler Information-based time-series-clustering dis-
crepancy measure (2). All pairwise distances between cities were
then used in a clustering procedure known as QT_Clust (3). This
procedure was initially developed for the clustering of high
dimensional genomic data. However, QT_Clust may be applied
to many time-series-data sets where the trajectory rather than
the process of a time series is of interest. A measure of cluster
size and within-cluster distance is used to compare how
geographically based influenza surveillance performs as op-
posed to nongeographically based surveillance.

Results

The average within-cluster distance for the nine census regions is
5205 units. Ignoring geography, we found that our nine largest
clusters held 85 of the cities (87.6% of the total cities observed)
and maintained an average within-cluster distance of 4918 units.
This amounted to a 5.5% reduction in the within-cluster
distance. The largest of these clusters held 33 cities from all
but one census region and had a within-cluster distance of 4295
units, meaning that its within-cluster distance was 17.5% smaller
than that of the mean within-cluster distance of the nine census
regions, the largest of which only held 17 cities.

Conclusions
It is natural to think of geographic proximity as an indicator of
how likely a city or region’s pattern of influenza mortality

mirrors that of another region. However, we hypothesize that
the relatively high level of travel within the country will affect
the pattern of mortality such that cities across the nation may
resemble one another more closely than cities within a
predefined geographic region. Our approach involved the
creation of a discrepancy measure specifically designed for
time series data and the application of a clustering routine that
seeks to create high quality clusters (rather than high-inclusion
clusters). The largest cluster held roughly a third of the observed
cities and yet still had a low within-cluster distance when
compared to the geographic census regions. This result suggests
that many cities observe similar influenza and pneumonia
mortality patterns despite varying geographical locations.

There are several limitations to this study. First, while our
discrepancy works well in the presence of missing data, a
preponderance of consecutive missing time points can negatively
affect performance. We determined that 25 cities out of the
original 122 cities reported too sporadically for analysis.
Furthermore, our clustering technique depends upon the
arbitrary selection of a ‘quality criterion’ that is very data
driven. High quality clusters can be obtained, but this often
leads to a large number of clusters. Conversely, a small number
of clusters can be obtained by lowering the quality criterion.
Future work will determine if we can use this time-series-
clustering approach to find repeatable clusters that may or may
not suggest changes to current geographic boundaries in an
effort to coordinate future influenza surveillance activities.
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