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Objective
The purpose of this study is to develop novel statistical methods
to analyze zero-inflated and overdispersed time series consisting
of count data.

Introduction
Time series data involving counts are frequently encountered in
many biomedical and public health applications. For example,
in disease surveillance, the occurrence of rare infections over
time is often monitored by public health officials, and the time
series data collected can be used for the purpose of monitoring
changes in disease activity. For rare diseases with low infection
rates, the observed counts typically contain a high frequency of
zeros (zero-inflated), but the counts can also be very large
(overdispersed) during an outbreak period (1). Failure to
account for zero-inflation and overdispersion in the data may
result in misleading inference and the detection of spurious
associations.

Methods
Under the partial likelihood framework (2), we develop a class
of regression models for zero-inflated and overdispersed count
time series based on the conditional zero-inflated negative
binomial (ZINB) distribution with probability mass function
defined as follows:
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The ZINB distribution is very general; it is a two-component
mixture of the NB distribution with a point mass at zero. It
reduces to the NB distribution when the zero-inflation para-
meter is zero and the zero-inflated Poisson (ZIP) distribution as
the dispersion parameter goes to infinity.

Results
We applied the methodologies proposed above to monthly
syphilis data in the United States from 1995 to 2009 (http://
www.cdc.gov/mmwr/). During the study period, a high propor-
tion of zeros and some large positive counts were observed in

most of the 66 surveillance locations. Among the four candidate
distributions (Poisson, NB, ZIP and ZINB), we find that the
ZINB distribution is most frequently favored in terms of
Akaike’s information criterion (AIC) (3). In contrast, we find
that the Poisson distribution is never selected for any of the
surveillance locations (Table 1).

Conclusions
Although the Poisson distribution has been used widely in
public health practice, its performance becomes unreliable in the
presence of zero-inflation and overdispersion. The ZINB
distribution is an attractive alternative to the Poisson distribu-
tion, as it provides a unified approach to model zero-inflated
and overdispersed count time series in a variety of disciplines.
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Table 1. Model selection results for the 66 surveillance locations

Distribution Poisson Negative

binomial

Zero-inflated

Poisson

Zero-inflated negative

binomial

Frequency 0 11 6 49
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