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Objective

Syndromic surveillance for new disease outbreaks is an
important problem in public health. Many statistical
techniques have been devised to address the problem,
but none are able to simultaneously achieve important
practical goals (good sensitivity and specificity, proper
use of domain information, and transparent support to
decision-makers). The objective, here, is to improve
model-based surveillance methods by (i) detailing the
structure of a hierarchical hidden Markov model (HMM)
for the surveillance of disease across space and time and
(ii) proposing a new, non-separable spatio-temporal auto-
regressive model.

Introduction

The goal of disease and syndromic surveillance is to monitor
and detect aberrations in disease prevalence across space and
time. Disease surveillance typically refers to the monitoring
of confirmed cases of disease, whereas syndromic surveil-
lance uses syndromes associated with disease to detect
aberrations. In either situation, any proper surveillance
system should be able to (i) detect, as early as possible,
potentially harmful deviations from baseline levels of disease
while maintaining low false positive detection rates, (ii)
incorporate the spatial and temporal dynamics of a disease
system, (iii) be widely applicable to multiple diseases or
syndromes, (iv) incorporate covariate information and (v)
produce results that are readily interpretable by policy
decision makers.

Early approaches to surveillance were primarily computa-
tional algorithms. For example, the CUSUM! technique and
its variants (see, for example, Fricker et al. 2) monitor the
cumulative deviation (over time) of disease counts from
some baseline rate. A second line of work uses spatial scan
statistics, originally proposed by Kulldorff® with later exten-
sions given in Walther* and Neill et al.®

Methods
As the data layer for the HMM, let,

Ys(t) ~ Plug(t) + 05(t) 45(1))

where Y,(t) represents a count of a disease at location s at
time t, u(t) represents a baseline rate of disease, d(t) € {0,1} is
an indicator as to whether or not the disease is in an
epidemic state and A(t) represents an added rate of disease
because of an epidemic state.

As models for the rates of disease (that is, u(f) and A(?)), a
novel non-separable spatio-temporal structure is assumed.
Furthermore, the indicators, J4(t) are assumed to follow an
absorbing state Markov chain, where the state transitions are
governed by the number of neighbors in an epidemic state.

Conclusions

The model performs well by correctly classifying states as either
epidemic or non-epidemic in both a large simulation study and
in an application to influenza/pneumonia fatality data.
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