Sequential Bayesian Inference for Detection and Response to Seasonal Epidemics

Description: 

Detection and response to seasonal outbreaks of endemic diseases provides an excellent testbed for quantitative bio-surveillance. As a case study we focus on annual influenza outbreaks. To incorporate observed year-over-year variation in flu incidence cases and timing of outbreaks, we analyze a stochastic compartmental SIS model that includes seasonal forcing by a latent Markovian factor. Epidemic detection then consists in identifying the presence of the environmental factor (“high” flu season), as well as estimation of the epidemic parameters, such as contact and recovery rates.

Objective

Development of a sequential Bayesian methodology for inference and detection of seasonal infectious disease epidemics.

Primary Topic Areas: 
Original Publication Year: 
2012
Event/Publication Date: 
December, 2012

May 25, 2018

Contact Us

NSSP Community of Practice

Email: syndromic@cste.org

 

This website is supported by Cooperative Agreement # 6NU38OT000297-02-01 Strengthening Public Health Systems and Services through National Partnerships to Improve and Protect the Nation's Health between the Centers for Disease Control and Prevention (CDC) and the Council of State and Territorial Epidemiologists. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC. CDC is not responsible for Section 508 compliance (accessibility) on private websites.

Site created by Fusani Applications