Skip to main content

ESSENCE

Description

Automated Electronic Disease Surveillance has become a common tool for most public health practitioners. Users of these systems can analyze and visualize data coming from hospitals, schools, and a variety of sources to determine the health of their communities. The insights that users gain from these systems would be valuable information for emergency managers, law enforcement, and other nonpublic health officials. Disseminating this information, however, can be difficult due to lack of secure tools and guidance policies. This abstract describes the development of tools necessary to support information sharing between public health and partner organizations.

Objective

The objective of this project is to provide a technical mechanism for information to be easily and securely shared between public health ESSENCE users and non-public health partners; specifically, emergency management, law enforcement, and the first responder community. This capability allows public health officials to analyze incoming data and create interpreted information to be shared with others. These interpretations are stored securely and can be viewed by approved users and captured by authorized software systems. This project provides tools that can enhance emergency management situational awareness of public health events. It also allows external partners a mechanism for providing feedback to support public health investigations.

Submitted by uysz on
Description

The ESSENCE demonstration module was built to help DoD health monitors make routine decisions based on disparate evidence sources such as daily counts of ILI-related chief complaints, ratios of positive lab tests for influenza, patient age distribution, and counts of antiviral prescriptions [1]. The module was a population-based (rather than individual-based) Bayesian network (PBN) in that inputs were algorithmic results from these multiple aggregate data streams, and output was the degree of belief that the combined evidence required investigation. The module reduced total alerts substantially and retained sensitivity to the majority of documented outbreaks while clarifying underlying sources of evidence. The current effort was to advance the prototype to production by refining components of the fusion methodology to improve sensitivity while retaining the reduced alert rate.

Objective

The project involves analytic combination of multiple evidence sources to monitor health at hundreds of care facilities. A demonstration module featuring a population-based Bayes Network [1] was refined and expanded for application in the Department of Defense Electronic Surveillance System for Community-Based Epidemics (ESSENCE).

Submitted by uysz on
Description

The new 2005 International Health Regulations (IHR), a legally binding instrument for all 194 WHO member countries, significantly expanded the scope of reportable conditions and are intended to help prevent and respond to global public health threats. SAGES aims to improve local public health surveillance and IHR compliance with particular emphasis on resource-limited settings. More than a decade ago, in collaboration with the US Department of Defense (DoD), the Johns Hopkins University Applied Physics Laboratory (JHU/APL) developed the Electronic Surveillance System for the Early Notification of Community-based Epidemics (ESSENCE). ESSENCE collects, processes, and analyzes non-traditional data sources (i.e. chief complaints from hospital emergency departments, school absentee data, poison control center calls, over-the-counter pharmaceutical sales, etc.) to identify anomalous disease activity in a community. The data can be queried, analyzed, and visualized both temporally and spatially by the end user. The current SAGES initiative leverages the experience gained in the development of ESSENCE, and the analysis and visualization components of SAGES are built with the same features in mind.

Objective

The Suite for Automated Global Electronic bioSurveillance (SAGES) is a collection of modular, flexible, open-source software tools for electronic disease surveillance in resource-limited settings. This demonstration will illustrate several new innovations and update attendees on new users in Africa and Asia.

Submitted by ynwang@ufl.edu on
Description

The Joint VA/DoD BioSurveillance System for Emerging Biological Threats project seeks to improve situational awareness of the health of VA/DoD populations by combining their respective data. Each system uses a version of the Electronic Surveillance System for Early Notification of Community-Based Epidemics (ESSENCE); a combined version is being tested. The current effort investigated combining the datasets for disease cluster detection. We compared results of retrospective cluster detection studies using both separate and joined data. — Does combining datasets worsen the rate of background cluster determination?

— Does combining mask clusters detected on the separate datasets?

— Does combining find clusters that the separate datasets alone would miss?

Objective:

We examined the utility of combining surveillance data from the Departments of Defense (DoD) and Veterans Affairs (VA) for spatial cluster detection.

 

Submitted by Magou on
Description

In November of 2011 BioSense 2.0 went live to provide tools for public health departments to process, store, and analyze meaningful use syndromic surveillance data. In February of 2012 ESSENCE was adapted to support meaningful use syndromic surveillance data and was installed on the Amazon GovCloud. Tarrant County Public Health Department agreed to pilot the ESSENCE system and evaluate its performance compared to a local version ESSENCE they currently used. The project determined the technical feasibility of utilizing the Internet cloud to perform detailed public health analysis, necessary changes needed to support meaningful use syndromic surveillance data, and any public health benefits that could be gained from the technology or data.

Objective:

This project represents collaboration among CDC’s BioSense Program, Tarrant County Public Health and the ESSENCE Team at the Johns Hopkins University APL. For over six months the Tarrant County Public Health Department has been sending data through the BioSense 2.0 application to a pilot version of ESSENCE on the Amazon GovCloud. This project has demonstrated the ability for local hospitals to send meaningful use syndromic surveillance data to the Internet cloud and provide public health officials tools to analyze the data both using BioSense 2.0 and ESSENCE. The presentation will describe the tools and techniques used to accomplish this, an evaluation of how the system has performed, and lessons learned for future health departments attempting similar projects.

 

Submitted by Magou on

Presented March 27, 2018.

During this 90-minute session, Aaron Kite-Powell, M.S., from CDC and Wayne Loschen, M.S., from JHU-APL provided an overview of tips and tricks in ESSENCE and answered questions from the audience regarding ESSENCE functions, capabilities and uses.

Description

ASPR deploys clinical assets, including an EMR system, to the ground per state requests during planned and no-notice events. The analysis of patient data collected by deployed federal personnel is an integral part of ASPR and FDOH’s surveillance efforts. However, this surveillance can be hampered by the logistical issues of field work in a post-disaster environment leading to delayed analysis and interpretation of these data to inform decision makers at the federal, state, and local levels. FDOH operates ESSENCE-FL, a multi-tiered, automated, and secure web-based application for analysis and visualization of clinical data. The system is accessible statewide by FDOH staff as well as by hospitals that participate in the system. To improve surveillance ASPR and FDOH engaged in a pilot project whereby EMR data from ASPR would be sent to FDOH in near realtime during the 2012 hurricane season and the 2012 RNC. This project is in direct support of Healthcare Preparedness Capability 6, Information Sharing, and Public Health Preparedness Capability 13, Public Health Surveillance and Epidemiological Investigation.

Objective:

U.S. Department of Health and Human Services (HHS) Office of the Assistant Secretary for Preparedness and Response (ASPR) partnered with the Florida Department of Health (FDOH), Bureau of Epidemiology, to implement a new process for the unidirectional exchange of electronic medical record (EMR) data when ASPR clinical assets are operational in the state following a disaster or other response event. The purpose of the current work was to automate the exchange of data from the ASPR electronic medical record system EMR-S into the FDOH Electronic Surveillance System for the Early Notification of Community-based Epidemics (ESSENCE-FL) system during the 2012 Republican National Convention (RNC).

 

 

 



 

Submitted by Magou on
Description

Telephone triage is a relatively new data source available to biosurveillance systems.1-2Because early detection and warning is a high priority, many biosurveillance systems have begun to collect and analyze data from non-traditional sources [absenteeism records, overthe-counter drug sales, electronic laboratory reporting, internet searches (e.g. Google Flu Trends) and TT]. These sources may provide disease activity alerts earlier than conventional sources. Little is known about whether VA telephone program influenza data correlates with established influenza biosurveillance.

Objective:

To evaluate the utility and timeliness of telephone triage (TT) for influenza surveillance in the Department of Veterans Affairs (VA).

Submitted by Magou on
Description

As system users develop queries within ESSENCE, they step through the user-interface to select data sources and parameters needed for their query. Then they select from the available output options (e.g., time series, table builder, data details). These activities execute a SQL query on the database, the majority of which are saved in a log so that system developers can troubleshoot problems. Secondarily, these data can be used as a form of web analytics to describe user query choices, query volume, query execution time, and develop an understanding of ESSENCE query patterns.

Objective:

The objective of this work is to describe the use and performance of the NSSP ESSENCE system by analyzing the structured query language (SQL) logs generated by users of the National Syndromic Surveillance Program'™s (NSSP) Electronic Surveillance System for the Early Notification of Community-based Epidemics (ESSENCE).

Submitted by elamb on
Description

The Kansas Syndromic Surveillance Program (KSSP) utilizes the ESSENCE v.1.20 program provided by the National Syndromic Surveillance Program to view and analyze Kansas Emergency Department (ED) data. Methods that allow an ESSENCE user to query both the Discharge Diagnosis (DD) and Chief Complaint (CC) fields simultaneously allow for more specific and accurate syndromic surveillance definitions. As ESSENCE use increases, two common methodologies have been developed for querying the data in this way. The first is a query of the field named “CC and DD.” The CC and DD field contains a concatenation of the parsed patient chief complaint and the discharge diagnosis. The discharge diagnosis consists of the last non-null value for that patient visit ID and the chief complaint parsed is the first non-null chief complaint value for that patient visit ID that is parsed by the ESSENCE platform. For this comparison, this method shall be called the CCDD method. The second method involves a query of the fields named, Chief Complaint History and œDischarge Diagnosis History. While the first requires only one field be queried, this method queries the CC History and DD History fields, combines the resulting data and de-duplicates this final data set by the C_BioSense_ID. Chief Complaint History is a list of all chief complaint values related to a singular ED visit, and Discharge Diagnosis History is the same concept, except involving all Discharge Diagnosis values. For this comparison, this method shall be called the CCDDHX method. While both methods are based on the same query concept, each method can yield different results.

Objective:

To compare and contrast two ESSENCE syndrome definition query methods and establish best practices for syndrome definition creation.

Submitted by elamb on