Skip to main content

Preparing Biosurveillance Data for Classic Monitoring

Description

Modern surveillance systems use statistical process control (SPC) charts such as Cumulative Sum and Exponentially Weighted Moving Average charts for monitoring daily counts of such quantities as ICD-9 codes from ED visits, sales of medications, and doctors’ office visits. The working assumption is that such pre-clinical data contain an early signature of disease outbreaks, manifested as an increase in the count levels. However, the direct application of SPC charts to the raw counts leads to unreliable performance. A popular statistical solution is to precondition the data before applying the charts by modeling or removing explainable patterns from the data and then monitoring the residuals. Although the general idea is common practice, the specifics of how to identify the existing explainable components and how to account for them are domain-specific. Therefore, we seek to present a set of modeling and data-driven tools that are useful for syndromic data.

 

Objective

SPC charts are widely used in disease surveillance. The charts are very effective when monitored data meet the requirements of temporal independence, stationarity, and normality. However, when these assumptions are violated, the SPC charts will either fail to detect special cause variations or will alert frequently even in the absence of anomalies. Currently collected biosurveillance data contain predictable factors such as day-of-week effects, seasonal effects, holidays, autocorrelation, and global trends that cause the data to violate these assumptions. This work (1) describes a set of tools for identifying such explainable patterns and (2) examines several data preconditioning methods that account for these factors, yielding data better suited for monitoring by traditional SPC charts.

Submitted by elamb on