Nonparametric Models for Identifying Gaps in Message Feeds

Description: 

Timely and accurate syndromic surveillance depends on continuous data feeds from healthcare facilities. Typical outlier detection methodologies in syndromic surveillance compare predictions of counts for an interval to observed event counts, either to detect increases in volume associated with public health incidents or decreases in volume associated with compromised data transmission. Accurate predictions of total facility volume need to account for significant variance associated with the time of day and week; at the extreme are facilities which are only open during limited hours and on select days. Models need to account for the cross-product of all hours and days, creating a significant data burden. Timely detection of outages may require sub-hour aggregation, increasing this burden by increasing the number of intervals for which parameters need to be estimated. Nonparametric models for the probability of message arrival offer an alternative approach to generating predictions. The data requirements are reduced by assuming some time-dependent structure in the data rather than allowing each interval to be independent of all others, allowing for predictions at sub-hour intervals.

Objective:

Characterize the behavior of nonparametric regression models for message arrival probability as outage detection tools.

Author: 
Primary Topic Areas: 
Original Publication Year: 
2018
Event/Publication Date: 
January, 2018

January 25, 2018

Contact Us

NSSP Community of Practice

Email: syndromic@cste.org

 

This website is supported by Cooperative Agreement # 6NU38OT000297-02-01 Strengthening Public Health Systems and Services through National Partnerships to Improve and Protect the Nation's Health between the Centers for Disease Control and Prevention (CDC) and the Council of State and Territorial Epidemiologists. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC. CDC is not responsible for Section 508 compliance (accessibility) on private websites.

Site created by Fusani Applications