Skip to main content

Niche Modeling of Dengue Fever Using Remotely Sensed Environmental Factors and BRT

Description

Dengue Fever (DF) is a vector-borne disease of the flavivirus family carried by the Aedes aegypti mosquito, and one of the leading causes of illness and death in tropical regions of the world. Nearly 400 million people become infected each year, while roughly one-third of the world’s population live in areas of risk. Dengue fever has been endemic to Colombia since the late 1970s and is a serious health problem for the country with over 36 million people at risk. We used the Magdalena watershed of central Colombia as the site for this study due to its natural separation from other geographical regions in the country, its wide range of climatic conditions, the fact that it includes the main urban centers in Colombia, and houses 80% of the country’s population. Advances in the quality and types of remote sensing (RS) satellite imagery has made it possible to enhance or replace the field collection of environmental data such as precipitation, temperature, and land use, especially in remote areas of the world such as the mountainous areas of Colombia. We modeled the cases of DF by municipality with the environmental factors derived from the satellite data using boosted regression tree analysis. Boosted regression tree analysis (BRT), has proven useful in a wide range of studies, from predicting forest productivity to other vector-borne diseases such as Leishmaniosis, and Crimean-Congo hemorrhagic fever. Using this framework, we set out to determine what are the differences between using presence/absence and case counts of DF in this type of analysis?

Objective:

In this paper we used Boosted Regression Tree analysis coupled with environmental factors gathered from satellite data, such as temperature, elevation, and precipitation, to model the niche of Dengue Fever (DF) in Colombia.

Submitted by elamb on