Modeling Baseline Shifts in Multivariate Disease Outbreak Detection

Description: 

Population surges or large events may cause shift of data collected by biosurveillance systems [1]. For example, the Cherry Blossom Festival brings hundreds of thousands of people to DC every year, which results in simultaneous elevations in multiple data streams (Fig. 1). In this paper, we propose an MGD model to accommodate the needs of dealing with baseline shifts.

Objective:

Outbreak detection algorithms monitoring only disease-relevant data streams may be prone to false alarms due to baseline shifts. In this paper, we propose a Multinomial-Generalized-Dirichlet (MGD) model to adjust for baseline shifts.
 

Primary Topic Areas: 
Original Publication Year: 
2012
Event/Publication Date: 
December, 2012

June 25, 2018

Contact Us

NSSP Community of Practice

Email: syndromic@cste.org

 

This website is supported by Cooperative Agreement # 6NU38OT000297-02-01 Strengthening Public Health Systems and Services through National Partnerships to Improve and Protect the Nation's Health between the Centers for Disease Control and Prevention (CDC) and the Council of State and Territorial Epidemiologists. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC. CDC is not responsible for Section 508 compliance (accessibility) on private websites.

Site created by Fusani Applications