Skip to main content

Influenza Surveillance Using Wearable Mobile Health Devices


Influenza surveillance has been a major focus of Data Science efforts to use novel data sources in population and public health. This interest reflects the public health utility of timely identification of flu outbreaks and characterization of their severity and dynamics. Such information can inform mitigation efforts including the targeting of interventions and public health messaging. The key requirement for influenza surveillance systems based on novel data streams is establishing their relationship with underlying influenza patterns. We assess the potential utility of wearable mHealth devices by establishing the aggregate responses to ILI along three dimensions: steps, sleep, and heart rate. Surveillance based on mHealth devices may have several desirable characteristics including 1) high resolution individual-level responses that can be prospectively analyzed in near real-time, 2) indications of physiological responses to flu that should be resistant to feedback loops, changes in health seeking behavior, and changes in technology use, 3) a growing user-base often organized into networks by providers or payers with increasing data quality and completeness, 4) the ability to query individual users underlying aggregate signals, and 5) demographic and geographic information enabling detailed characterization. These features suggest the potential of mHealth data to deliver faster, more locally relevant surveillance systems.

Objective: To describe population-level response to influenza-like illness (ILI) as measured by wearable mobile health (mHealth) devices across multiple dimensions including steps, heart rate, and sleep duration and to assess the potential for using large networks of mHealth devices for influenza surveillance.

Submitted by elamb on