Skip to main content

Cost-effective Surveillance for Infectious Diseases Through Specimen Pooling and Multiplex Assays

Description

An essential tool for infectious disease surveillance is to have a timely and cost-effective testing method. For this purpose, laboratories frequently use specimen pooling to assay high volumes of clinical specimens. The simplest pooling algorithm employs a two-stage process. In the first stage, a set number of specimens are amalgamated to form a group that is tested as if it were one specimen. If this group tests negatively, all individuals within the group are declared disease free. If this group tests positively, a second stage is implemented with retests performed on each individual. This testing algorithm is repeated across all individuals that need to be tested. In comparison to testing each individual specimen, large reductions in the number of tests occur when overall disease prevalence is small because most groups will test negatively. Most pooling algorithms have been developed in the context of single-disease assays. New pooling algorithms are developed in the context of multiplex (multiple-disease) assays applied over two or three hierarchical stages. Individual risk information can be employed by these algorithms to increase testing efficiency.

Objective: To develop specimen pooling algorithms that reduce the number of tests needed to test individuals for infectious diseases with multiplex assays.

Submitted by elamb on