Classification of errors for quality assurance in the emerging infections program influenza hospitalizations surveillance system

Description: 

The Centers for Disease Control and Prevention's (CDC) Emerging Infections Program (EIP) monitors and studies many infectious diseases, including influenza. In 10 states in the US, information is collected for hospitalized patients with laboratory-confirmed influenza. Data are extracted manually by EIP personnel at each site, stripped of personal identifiers and sent to the CDC. The anonymized data are received and reviewed for consistency at the CDC before they are incorporated into further analyses. This includes identifying errors, which are used for classification.

 

Objective

Introducing data quality checks can be used to generate feedback that remediates and/or reduces error generation at the source. In this report, we introduce a classification of errors generated as part of the data collection process for the EIP’s Influenza Hospitalization Surveillance Project at the CDC. We also describe a set of mechanisms intended to minimize and correct these errors via feedback, with the collection sites.

Primary Topic Areas: 
Original Publication Year: 
2010
Event/Publication Date: 
December, 2010

June 14, 2019

Contact Us

NSSP Community of Practice

Email: syndromic@cste.org

 

This website is supported by Cooperative Agreement # 6NU38OT000297-02-01 Strengthening Public Health Systems and Services through National Partnerships to Improve and Protect the Nation's Health between the Centers for Disease Control and Prevention (CDC) and the Council of State and Territorial Epidemiologists. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC. CDC is not responsible for Section 508 compliance (accessibility) on private websites.

Site created by Fusani Applications