Challenges in adapting an natural language processing system for real-time surveillance

Description: 

We are developing a Bayesian surveillance system for realtime surveillance and characterization of outbreaks that incorporates a variety of data elements, including free-text clinical reports. An existing natural language processing (NLP) system called Topaz is being used to extract clinical data from the reports. Moving the NLP system from a research project to a real-time service has presented many challenges.

 

Objective

Adapt an existing NLP system to be a useful component in a system performing real-time surveillance.

Primary Topic Areas: 
Original Publication Year: 
2010
Event/Publication Date: 
December, 2010

June 18, 2019

Contact Us

NSSP Community of Practice

Email: syndromic@cste.org

 

This website is supported by Cooperative Agreement # 6NU38OT000297-02-01 Strengthening Public Health Systems and Services through National Partnerships to Improve and Protect the Nation's Health between the Centers for Disease Control and Prevention (CDC) and the Council of State and Territorial Epidemiologists. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC. CDC is not responsible for Section 508 compliance (accessibility) on private websites.

Site created by Fusani Applications