School closure has long been proposed as a non-pharmaceutical intervention in reducing the transmission of pandemic influenza. Children are thought to have high transmission potential because of their low immunity to circulating influenza viruses and high contact rates. In the wake of pandemic (H1N1) 2009, simulation studies suggest that early and sustained school closure might be effective at reducing community-wide transmission of influenza. Determining when to close schools once an outbreak occurs has been difficult. Influenza-related absentee data from Japan were previously used to develop an algorithm to predict an outbreak of influenza-related absenteeism. However, the cause of absenteeism is frequently unavailable, making application of this model difficult in certain settings. For this study, we aimed to evaluate the potential for adapting the Japanese algorithm for use with all-cause absenteeism, using data on the rate of influenza-related nurse visits in
corresponding schools to validate our findings.
Objective
To determine the optimal pattern in school-specific all-cause absenteeism for use in informing school closure related to pandemic influenza.