Skip to main content

Sriburadej Thomsun

Description

We are developing a Bayesian surveillance system for realtime surveillance and characterization of outbreaks that incorporates a variety of data elements, including free-text clinical reports. An existing natural language processing (NLP) system called Topaz is being used to extract clinical data from the reports. Moving the NLP system from a research project to a real-time service has presented many challenges.

 

Objective

Adapt an existing NLP system to be a useful component in a system performing real-time surveillance.

Submitted by hparton on
Description

Current practices of automated case detection fall into the extremes of diagnostic accuracy and timeliness. In regards to diagnostic accuracy, electronic laboratory reporting (ELR) is at one extreme and syndromic surveillance is at the other. In regards to timeliness, syndromic surveillance can be immediate, and ELR is delayed 7 days from initial patient visit. A plausible solution, a middle way, to the extremes of diagnostic precision and timeliness in current case detection practices is an automated Bayesian diagnostic system that uses all available data types, for example, freetext ED reports, radiology reports, and laboratory reports.We have built such a solution - Bayesian case detection (BCD). As a probabilistic system, BCD operates across the spectrum of diagnostic accuracy, that is, it outputs the degree of certainty for every diagnosis. In addition, BCD incorporates multiple data types as they appear during the course of a patient encounter or lifetime, with no degradation in the ability to perform diagnosis.

 

Objective

This paper describes the architecture and evaluation of our recently developed automated BCD system.

Submitted by hparton on