Skip to main content

Skora Joseph

Description

Electronic disease surveillance systems can be extremely valuable tools; however, a critical step in system implementation is collection of data. Without accurate and complete data, statistical anomalies that are detected hold little meaning. Many people who have established successful surveillance systems acknowledge the initial data collection process to be one of the most challenging aspects of system implementation. These challenges manifest from varying degrees of economical, infrastructural, environmental, cultural, and political factors. Although some factors are not controllable, selecting a suitable collection framework can mitigate many of these obstacles. JHU/APL, with support from the Armed Forces Health Surveillance Center, has developed a suite of tools, Suite for Automated Global bioSurveillance, that is adaptable for a particular deployment’s environment and takes the above factors into account. These subsystems span communication systems such as telephone lines, mobile devices, internet applications, and desktop solutions - each has compelling advantages and disadvantages depending on the environment in which they are deployed. When these subsystems are appropriately configured and implemented, the data are collected with more accuracy and timeliness.

 

Objective

This paper describes the common challenges of data collection and presents a variety of adaptable frameworks that succeed in overcoming obstacles in applications of public health and electronic disease surveillance systems and/or processes, particularly in resource-limited settings.

Submitted by hparton on
Description

More than a decade ago, in collaboration with the U.S. Department of Defense, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) developed the Electronic Surveillance System for the Early Notification of Community-based Epidemics (Enterprise ESSENCE), which is currently used by federal, state and local health authorities in the US. As emerging infections will most likely originate outside of the US (for example, SARS) the application of electronic biosurveillance is increasingly important in resource limited areas. In addition, such systems help governments respond to the recently modified International Health Regulations. Leveraging the experience gained in the development of Enterprise ESSENCE, JHU/APL has developed two freely available electronic biosurveillance systems suitable for use in resource-limited areas: Open ESSENCE (OE) and ESSENCE Desktop Edition (EDE).

 

Objective

This paper describes the development and early implementation of two freely available electronic biosurveillance software applications: OE, and EDE.

Submitted by hparton on