Skip to main content

Chan Ta-Chien

Description

In December 2009, Taiwan’s CDC stopped its sentinel physician surveillance system. Currently, infectious disease surveillance systems in Taiwan rely on not only the national notifiable disease surveillance system but also real-time outbreak and disease surveillance (RODS) from emergency rooms, and the outpatient and hospitalization surveillance system from National Health Insurance data. However, the timeliness of data exchange and the number of monitored syndromic groups are limited. The spatial resolution of monitoring units is also too coarse, at the city level. Those systems can capture the epidemic situation at the nationwide level, but have difficulty reflecting the real epidemic situation in communities in a timely manner. Based on past epidemic experience, daily and small area surveillance can detect early aberrations. In addition, emerging infectious diseases do not have typical symptoms at the early stage of an epidemic. Traditional disease-based reporting systems cannot capture this kind of signal. Therefore, we have set up a clinic-based surveillance system to monitor 23 kinds of syndromic groups. Through longitudinal surveillance and sensitive statistical models, the system can automatically remind medical practitioners of the epidemic situation of different syndromic groups, and will help them remain vigilant to susceptible patients. Local health departments can take action based on aberrations to prevent an epidemic from getting worse and to reduce the severity of the infected cases.

Objective: Sentinel physician surveillance in the communities has played an important role in detecting early aberrations in epidemics. The traditional approach is to ask primary care physicians to actively report some diseases such as influenza-like illness (ILI), and hand, foot, and mouth disease (HFMD) to health authorities on a weekly basis. However, this is labor-intensive and time-consuming work. In this study, we try to set up an automatic sentinel surveillance system to detect 23 syndromic groups in the communites.

Submitted by elamb on
Description

Pandemic 2009 H1N1 influenza and recent H7N9 influenza outbreaks made the public aware of the threat of influenza infection. In fact, annual influenza epidemic caused heavy disease burden and high economic loss around the world [1, 2]. Although the virological surveillance provided the high sensitivity and specificity for testing results, the timeliness and the cost of the test were not feasible for extensive public health surveillance. In addition, traditional sentinel physician surveillance also encountered many challenges such as the representativeness and reporting bias. The seamless surveillance system without extra labor reporting would be the ideal approach. Taiwan had as high as 99% of health insurance coverage. The real-time monitoring of the ILI clinical visits in the communities could reflect the severity of influenza epidemics. In this study, we used an innovative two-stage approach for detecting aberrations during 2009 pandemic influenza in Taiwan.

Objective

This study proposed a two-stage approach for early detection of aberrations of influenza-like illness (ILI) using the small-area based claim data of outpatient and emergency room visit.

Submitted by elamb on
Description

The global health threat of highly pathogenic avian influenza H5N1 has been increasing rapidly in the world since the crosscountry outbreaks during 2003-04. In South and East Asia, the human influenza A (H3N2) was proved to be seeded there with occurring annual cases. Intensive surveillance of influenza is the most urgent strategy to avoid large-scale epidemics and high case fatality rates. Sentinel physicians’ surveillance is the most sensitive mechanism to reflect the health status of community people. In France and Japan, comprehensive sentinel-physician surveillance systems were set up and geographic information system was applied to display the diffusion patterns of influenza-like illness. Kriging method, which was used to display the diffusion, was hard to monitor the multiple temporal and spatial dimensions in one map. Therefore, Ring maps were proposed to overcome this difficulty.

 

Objective

This study describes a visualizing ring maps to monitor the alert levels of Influenza-like illness, and provide possible insights of temporal and spatial diffusion patterns in epidemic and nonepidemic seasons.

Submitted by elamb on
Description

Objective: Emerging and re-emerging infectious diseases (EID/REID) involve large populations at risk and thus they might lead to rapidly increasing cases or case fatality rates. Living in this global village, cross-country or cross-continent spread has occurred more frequently in recent decades, implying that epidemics of any infectious disease can expand from local to national to international if control efforts are not effective.

Submitted by elamb on
Description

In July 2012, the 54 children infected with enterovirus-71(EV71) were died in Cambodia. The media called it as mystery illness and made Asian parents worried. In fact, the severe epidemics of enterovirus occurred frequently in Asia, including Malaysia, Singapore, Taiwan and China. The clinical severity varied from asymptomatic to mild (hand-foot-mouth disease and herpangina) and severe pulmonary edema/hemorrhage and encephalitis. Up to now, the development of vaccine for EV-71 and the more effective antiviral drug was still ongoing. Therefore, surveillance for monitoring the enterovirus activity and understanding the epidemiological characteristics between mild and severe enterovirus cases was crucial.

Objective

This study was to elucidate the spatio-temporal correlations between the mild and severe enterovirus cases through integrating enterovirus-related three surveillance systems in Taiwan. With these fully understanding epidemiological characteristics, hopefully, we can develop better measures and indicators from mild cases to provide early warning signals and thus minimizing subsequent numbers of severe cases.

Submitted by teresa.hamby@d… on
Description

In the 2015 dengue outbreak in Taiwan, 43,784 people were infected and 228 died, making it the nation’s largest outbreak ever. Facing the increasing threat of dengue, the integration of health information for prevention and control of outbreaks becomes very important. Based on past epidemics, the areas with higher incidence of dengue fever are located in southern Taiwan. Without a smart and integrated surveillance system, the information on case distribution, high risk areas, mosquito surveillance, flooding areas and so on is fragmented. The first-line public health workers need to check all this information through different systems manually. When outbreaks occurred, paper-based outbreak investigation forms had to be prepared and filled in by public health workers. Then, they needed to enter part of this information into Taiwan CDC’s system. Duplicated work occurred and cost lots of labor time during the epidemic period. Therefore, we choose one rural county, Pingtung County, with scarce financial resources, to set up a new dengue surveillance system.

Objective:

In this paper we designed one cross-platform surveillance system to assist dengue fever surveillance, outbreak investigation and risk management of dengue fever.

Submitted by elamb on
Description

Regional disease surveillance as well as data transparency and sharing are the global trend for mitigating the threat of infectious diseases. The WHO has already played a leading role in FluNet (http:// www.who.int/influenza/gisrs_laboratory/flunet/en/ ) and DenguNet (http://www.who.int/csr/disease/dengue/denguenet/en/). However, the enterovirus-related infections which caused a high disease burden for pre-school children in South-East Asian regions over the last two decades still lack a comprehensive surveillance system in the region [1]. If the spreading pattern and a possible alert mechanism can be identified and set up, it will be beneficial for controlling hand, foot and mouth disease (HFMD) epidemics in East Asia. In some research findings, the transmission of HFMD was correlated with temperature, relative humidity, wind speed, precipitation, population density and the periods in which schools were open [2]. A delayed temporal trend was also found with the increase in latitude [3,4] . In this study, we tried to apply publicly available weekly surveillance data in Japan, Taiwan and Singapore to evaluate the spatio-temporal evolution of HFMD epidemics and how the weather conditions affect the HFMD epidemics.

Objective

Enterovirus epidemics, especially affecting young children, have occurred in South-East Asia every year. If the epidemic periods are inter-correlated among different areas, early warning signals could be issued to prevent or reduce the severity of the later epidemics in other areas. In this study, we integrated the available surveillance and weather data in East Asia to elucidate possible spatio-temporal correlations and weather conditions among different areas from low to high latitude.

Submitted by Magou on
Description

Transparency of information on infectious disease epidemics is crucial for not only public health workers but also the residents in the communities. Traditionally, disease control departments created official websites for displaying disease maps or epi-curves with the confirmed case counts. The websites were usually very formal and static, without interaction, animation, or even the aid of spatial statistics. Therefore, we tried to take advantage of open data and use a lightweight programming language, JavaScript, to create an interactive website, named “Taiwan Infectious Disease Map (http://ide.geohealth.tw/)“. With the website, we expect to provide real-time incidence information and related epidemiological features using interactive maps and charts. 

Objective

To visualize the incidence of notifiable infectious diseases spatially and interactively, we aimed to provide a friendly interface to access local epidemic information based on open data for health professionals and the public. 

Submitted by Magou on