An Adaptive Anomaly Detection Algorithm

Description: 

Ideal anomaly detection algorithms shoulddetect both sudden and gradual changes, while keeping the background false positive alert rate at a tolerable level. The algorithms should also be easy to use. Our objective was to develop an anomaly detection algorithm that adapts to the time series being analyzed and reduces false positive signals.

Primary Topic Areas: 
Original Publication Year: 
2008
Event/Publication Date: 
December, 2008

July 30, 2018

Contact Us

NSSP Community of Practice

Email: syndromic@cste.org

 

This website is supported by Cooperative Agreement # 6NU38OT000297-02-01 Strengthening Public Health Systems and Services through National Partnerships to Improve and Protect the Nation's Health between the Centers for Disease Control and Prevention (CDC) and the Council of State and Territorial Epidemiologists. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC. CDC is not responsible for Section 508 compliance (accessibility) on private websites.

Site created by Fusani Applications